Теория информации. Лабораторные работы №1-5. (новые задания 2015)
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Лабораторная работа №1
Вычисление энтропии Шеннона
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содержать последовательность символов с равномерным распределением, т.е. символы встречаются в последовательности равновероятно и независимо.
Второй файл (F2) содержит последовательность символов с неравновероятным распределением.
2. Составить программу, определяющую несколько оценок энтропии созданных текстовых файлов. Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты.
Лабораторная работа №2
Вычисление энтропии Шеннона
Задание:
1. Составить программу, определяющую несколько оценок энтропии текстового файла (размер не менее 10 Кб). Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравнить полученные результаты с результатами лабораторной работы 1.
Лабораторные работы №3
Оптимальное побуквенное кодирование
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в лабораторных работах №1,2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Лабораторные работы №4
Методы почти оптимального кодирования
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано. Текстовые файлы использовать те же, что и в лабораторной работе №1 и 2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3 После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Лабораторные работы №5
Почти оптимальное кодирование
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в лабораторной работе №1-4. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Вычисление энтропии Шеннона
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содержать последовательность символов с равномерным распределением, т.е. символы встречаются в последовательности равновероятно и независимо.
Второй файл (F2) содержит последовательность символов с неравновероятным распределением.
2. Составить программу, определяющую несколько оценок энтропии созданных текстовых файлов. Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты.
Лабораторная работа №2
Вычисление энтропии Шеннона
Задание:
1. Составить программу, определяющую несколько оценок энтропии текстового файла (размер не менее 10 Кб). Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравнить полученные результаты с результатами лабораторной работы 1.
Лабораторные работы №3
Оптимальное побуквенное кодирование
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в лабораторных работах №1,2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Лабораторные работы №4
Методы почти оптимального кодирования
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано. Текстовые файлы использовать те же, что и в лабораторной работе №1 и 2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3 После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Лабораторные работы №5
Почти оптимальное кодирование
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в лабораторной работе №1-4. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Дополнительная информация
2015
Зачет
Мачикина Е.П.
ВНИМАНИЕ! Лабораторная работа №1 выполнена с замечаниями, но зачтена с первого раза (замечания в тексте).
Зачет
Мачикина Е.П.
ВНИМАНИЕ! Лабораторная работа №1 выполнена с замечаниями, но зачтена с первого раза (замечания в тексте).
Похожие материалы
Теория информации. Лабораторная работа № 1
gnv1979
: 5 января 2017
Тема: Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен
30 руб.
Теория информации. Лабораторная работа №1.
zhekaersh
: 21 февраля 2016
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содер
70 руб.
Теория информации. Лабораторная работа №1
Legeoner13
: 6 марта 2015
Вычисление энтропии Шеннона
Порядок выполнения работы
1. Изучить теоретический материал гл. 2.
2. Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и за-главные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Т
50 руб.
Лабораторная работа №1. Теория информации
mamontynok
: 31 января 2014
Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Точность вычисления -- 4 знака после запятой. Обязательно предусмотреть возможность ввода имени файла
9 руб.
Лабораторная работа №1. Теория информации
Lampa
: 7 декабря 2013
Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Точность вычисления -- 4 знака после запятой. Обязательно предусмотреть возможность ввода имени файла
13 руб.
Лабораторные работы №1-3. Теория информации
Petr1
: 7 мая 2020
Лабораторная работа №1
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т
350 руб.
Теория информации. Лабораторные работы №1-5 на С++
rmn77
: 17 февраля 2019
Теория информации. Лабораторные работы №1-5 на С++. Все варианты.
Лабораторная работа 1
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 ил
10 руб.
Теория информации. Лабораторные работы №1-5.
sibguter
: 17 октября 2018
Тема: Вычисление энтропии Шеннона
Тема: Вычисление энтропии Шеннона
Тема: Оптимальное побуквенное кодирование
Тема: Методы почти оптимального кодирования
Тема: Почти оптимальное кодирование
69 руб.
Другие работы
КОНТРОЛЬНАЯ РАБОТА И ЛАБОРАТОРНАЯ РАБОТА №1 СИГНАЛЫ ПРОСТЫХ ИЗОБРАЖЕНИЙ По дисциплине: Телевидение вариант ВАРИАНТ 6
Ирина36
: 20 августа 2024
ЛАБОРАТОРНАЯ РАБОТА №1 СИГНАЛЫ ПРОСТЫХ ИЗОБРАЖЕНИЙ По дисциплине: Телевидение вариант ДЛЯ ВСЕХ
Цель работы
Целью работы является изучение формы и состава различных видеосигналов, измерение их временных параметров.
Задание на лабораторную работу
1. Исследовать форму и измерить временные параметры импульсов, участвующих в формировании ПТС, для чего соблюдая временные и амплитудные соотношения, зарисовать форму и измерить период следования и длительность ССИ, КСИ, СГИ, КГИ. Для каждого вида импуль
500 руб.
Лабораторная работа №1. Семестр №2. Программирование на языках высокого уровня. Часть №2
kiana
: 1 февраля 2014
Лабораторная работа № 1
Программирование алгоритмов линейной и разветвляющейся структуры.
Задание 1. Составьте и выполните программу линейной структуры согласно варианту задания.
Вариант задания 1
Вычислить значение функции переменных при заданных значениях параметров:
Задание 2. Составьте программы разветвляющейся структуры согласно варианту задания (используя IF) .
Вариант задания 2
Даны два числа. Большее из этих двух чисел заменить их полусуммой, а меньшее удвоенным произведением.
Зада
50 руб.
Проект комплексной механизации перегрузочных работ в условиях открытых выработок производи-тельностью 5000 м3/ч. Спец. часть: Модернизация ленточного конвейера
Рики-Тики-Та
: 24 апреля 2012
СОДЕРЖАНИЕ
Введение
1. Общая конструкторско-расчетная часть
1.1 Комплексная механизация перегрузочных работ
1.1.1 Понятие о структуре комплексной механизации
1.1.2 Принципы формирования комплексов
1.1.3 Комплекс машин непрерывного действия
1.2 Грузопотоки, их формирование и измерение
1.3 Надежность и качество машин
1.4
1650 руб.
Контрольная работа № 2. Вариант №7, 1--й семестр
DEKABR1973
: 28 января 2017
1. От источника с напряжением 800 В необходимо передать потребителю мощность 10 кВт на некоторое расстояние. Какое наибольшее сопротивление может иметь линия передачи, чтобы потери энергии в ней не превышали 10 % от передаваемой мощности?
2. За время 8 с при равномерно возраставшей силе тока в проводнике сопротивлением 8 Ом выделилось количество теплоты 500 Дж. Вычислите заряд, прошедший в проводнике, если сила тока в начальный момент времени равна нулю.
3. По бесконечно длинному проводу, и
55 руб.