Контрольная работа по дисциплине: Эконометрика. Вариант №5.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат тестаи его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Исходные данные задания варианта 5.
Y X1 X2 X3
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат тестаи его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Исходные данные задания варианта 5.
Y X1 X2 X3
Дополнительная информация
Оценка: "Отлично"
год: 2015.
год: 2015.
Похожие материалы
Контрольная работа по дисциплине. Эконометрика. Вариант № 5
7059520
: 15 октября 2015
Содержание
Описание данных и задание 3
Ход работы 15
Задание 1. 15
1.1 Оценим параметры линейной регрессии МНК. 15
1.2 Оцените значимость каждого фактора в отдельности по t-критерию; 15
1.3 Оценим совместную значимость всех факторов по F-критерию 15
1.4 Проверим гетероскедастичность остатков 15
1.5 Проверим нормальность остатков; 15
Задание 2. 16
2.1. Проверить совместную значимость факторов X1, X3. 16
2.2. RESET тест Рамсея 16
2.3 Тест Бреуша – Годфри 18
2.3 Тест Чоу (I форма) 29
2.4. Проверка
55 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №5
Amor
: 5 мая 2014
Содержание
Описание данных и задание 3
Ход работы 15
Задание 1. 15
1.1 Оценим параметры линейной регрессии МНК. 15
1.2 Оцените значимость каждого фактора в отдельности по t-критерию; 15
1.3 Оценим совместную значимость всех факторов по F-критерию 15
1.4 Проверим гетероскедастичность остатков 15
1.5 Проверим нормальность остатков; 15
Задание 2. 16
2.1. Проверить совместную значимость факторов X1, X3. 16
2.2. RESET тест Рамсея 16
2.3 Тест Бреуша – Годфри 18
2.3 Тест Чоу (I форма) 29
2.4. Проверка
350 руб.
Контрольная работа по дисциплине "Эконометрика"
ДО Сибгути
: 26 декабря 2015
Задание.
Изучается зависимость цены на некоторый товар длительного пользования в магазинах немаленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
• Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
• Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобными);
•
150 руб.
Эконометрика. Вариант №5
Basileus030
: 19 октября 2014
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте
100 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №7
SibGOODy
: 31 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент данных приведен ниже:
I Y X1 X2 X3
1 258,7424251 19,00014401 15,00062408 20,003034
2 278,1483375 15,00042731 7,001206603 28,00818065
3 317,0628785 23,00018563 1,000471387 26,99586761
4 317,2176894 23,99930969 -2,000672058 25,99638428
5 312,8286505 20,0009705 -4,99776773 31,00499145
6 320,6573656 27,00095
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант 21
SibGOODy
: 28 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии.
Фрагмент исходных данных (вариант 21):
I Y X1 X2 X3
1 254,0258612 26,99993506 -6,000751544 0,999628044
2 200,5911847 14,00039776 14,00032088 24,99863727
3 219,1684443 15,99944831 3,998535023 27,99876502
4 250,6468318 26,00101627 4,999294123 31,99315634
5 225,5263428 19,99907954 7,002824734 27,00623532
6 237,694
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №19
SibGOODy
: 28 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент исходных данных (первые 10 значений):
I Y X1 X2 X3
1 246,2355165 20,00017371 7,001488238 8,000799927
2 273,3560835 26,00078398 -3,000062405 7,001980093
3 225,8606823 16,00046735 1,000061458 28,99265482
4 237,439026 14,00086051 10,00057324 2,999145599
5 213,4838941 11,9995867 -3,000377192 25,00087718
6 21
800 руб.
Контрольная работа по дисциплине "Эконометрика". Вариант №10
flewaway
: 16 декабря 2017
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
250 руб.
Другие работы
Психологічна діагностика особистості з девіаціями поведінки
Lokard
: 18 октября 2013
Психологічна допомога особистості з девіантною поведінкою передбачає, насамперед, її психологічну діагностику, що має на меті встановити як різновид девіантної поведінки особистості, так і чинники, що зумовили такий стан речей. Слід зауважити, що традиційно причини девіантної поведінки шукають, виявляючи особливості сімейного оточення, роботи школи чи трудового колективу, впливу неформального оточення. Не заперечуючи важливості аналізу цих чинників, у психологічній діагностиці слід, насамперед,
5 руб.
Чрезвычайные ситуации на транспорте
Slolka
: 21 марта 2014
Чрезвычайные ситуации на транспорте
1. Особенности аварий на транспорте
Значительное число техногенных катастроф происходит на транспорте. Транспорт является важнейшим связующим звеном частей любой страны, звеном современного многоотраслевого хозяйства. Транспорт, кроме пассажиров, перевозит массу разнообразных грузов. Многие из этих грузов представляют для человека значительную угрозу. Они могут гореть, взрываться, отравлять и заражать окружающую среду.
Ежегодно в Украине перевозится транспорт
15 руб.
Контрольная работа по дисциплине: Основы оптической связи. Вариант 12
xtrail
: 25 августа 2025
Содержание
1 Основы физической и квантовой оптики 2
2 Физические среды оптической связи и их характеристики 6
Задача 2 9
3 Пассивные устройства в оптической схемотехнике 12
4 Модули передачи оптических сигналов 14
4.1 Источники оптического излучения 14
Задача 4.1 16
4.2 Модуляция оптического излучения 20
Задача 4.2 23
5 Модули приёма оптических сигналов 27
5.1 Фотодетекторы 27
Задача 5.1 29
5.2 Фотоприёмные устройства 31
Задача 5.2 33
6 Оптические усилители 36
Задача 6 38
7 Линейные тракты оптич
1300 руб.
Тиски 44.000 AutoCAD 3d
bublegum
: 28 мая 2020
Тиски 44.000 AutoCAD 3d модель
Поворотные слесарные тиски служат для закрепления обрабатываемых деталей. Ходовой винт 4, ввернутый в неподвижную гайку 5, закрепленную на корпусе болтом 14, вращают ручкой 11. Вместе с винтом 4 перемещается ползун соединенный с винтом кольцом 7 и штифтом 16. Обрабатываемая деталь зажимается между губами 8. В плите 2 имеется кольцевая канавка для анкерных болтов 13, прижимающих корпус 3 к плите. Кольцевая канавка позволяет поворачивать корпус относительно плиты и
400 руб.