Нефть как вязкопластичная среда
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра изображений
- Microsoft Word
- Компас или КОМПАС-3D Viewer
Описание
Реология (от греческого rheo - «течь») - это раздел физики, в котором рассматриваются вопросы деформации и текучести веществ. Это название было предложено в 1929 г. Бингамом (Е.С. Bingham). Ближе всего реология примыкает к механике или, точнее, к физико-химической механике.
Задачей реологии является установление взаимосвязи между силами, действующими на среду, и вызванными ими деформациями. Если при этом материя рассматривается так, как она представляется нашим ощущениям, т.е. как сплошная среда, то речь идет о феноменологической реологии. Феноменологические модели применяются при отсутствии сведений о деталях организации рассматриваемой системы. На этом уровне описания среда рассматривается как «черный ящик» и задача реологии сводится к проведению ключевых опытов, раскрывающих связь между входными (деформации) и выходными (напряжения) сигналами. Но внутренняя орга-низация исследуемой среды при этом остается скрытой. Концептуальная реология (или микрореология) выводит реологические соотношения теоре-тическим путем, опираясь на достижения физики и химии. В настоящее время наиболее развит структурно-кинетический подход, согласно которому процессы разрушения и восстановления структурных связей в жидкости схематично представляются как прямая и обратная! химические реакции, суммарное действие которых описывается некоторым кинетическим уравнением относительно концентрации связей.
Концептуальный подход имеет преимущества в строгости и общности, однако обладает тем недостатком, что может разрешить только огра-ниченный круг проблем. Перефразируя известное замечание , можно сказать, что концептуальная реология решает те задачи, которые может так, как нужно, а феноменологическая реология решает те задачи, которые нужно так, как она может. Преимуществом феноменологического подхода является его высокая прагматическая нацеленность на решение инженерных задач; часто феноменологические модели способствуют обоснованию и мотивировке концептуальных моделей.
При описании реальных сред весьма полезными оказываются представления об идеальных телах, проявляющих простейшие реологические свойства: упругость, пластичность и вязкость. В качестве материальных носителей этих свойств можно представить себе соответственно сталь, пластилин и воду. Конечно, каждое вещество в реальности обладает всеми реологическими свойствами, хотя и в различной степени. Так, если сталь подвергнуть напряжению порядка 108 Па, то она начинает проявлять пластические свойства. Поэтому реальные материалы представляются в виде некоторых комбинаций трех фундаментальных идеальных тел. В литературе идеальные тела принято называть именами ученых, которые ввели их впервые: упругое тело называется телом Гука (Нооке, 1635-1703 гг.), пластическое - телом Сен-Венана (St. Venant, 1797-1886 гг.), вязкое - телом Ньютона (I. Newton, 1642-1726 гг.).
Каждый материал характеризуется двумя реологическими уравне-ниями: одним для объемных деформаций (под действием всестороннего равномерного сжатия) и другим - для деформаций формоизменения (под последними чаще всего понимаются сдвиговые деформации). Классическая реология предполагает, что при всестороннем давлении все материалы (и твердые и жидкие) ведут себя как идеально упругие тела. Это предположение в большинстве случаев является весьма хорошим прибли-жением, но при объемном деформировании структурных жидкостей могут проявить себя объемная вязкость и релаксация, нарушающие его справед-ливость.
Наиболее ярко реологическое различие между сталью и пластилином проявляется при сдвиговых деформациях. Математически это различие в поведении при сдвиге можно выразить, рассматривая мысленно призмы, вырезанные из разных материалов .
1.1.1. Упругое тело
Прежде всего рассмотрим малую призму из стали, находящуюся под действием тангенциальной силы F, приложенной к верхней горизонтальной грани (рис.1.1)Очевидно величина сдвига призмы определяется углом ,образованным вертикальными и скошенными боковыми гранями. Поскольку то в качестве меры сдвига можно использовать именно это отношение (здесь U- смещение верхней грани, Н -высота призмы). Путем перехода к бесконечно малым величинам величину сдвига можно определить как
Задачей реологии является установление взаимосвязи между силами, действующими на среду, и вызванными ими деформациями. Если при этом материя рассматривается так, как она представляется нашим ощущениям, т.е. как сплошная среда, то речь идет о феноменологической реологии. Феноменологические модели применяются при отсутствии сведений о деталях организации рассматриваемой системы. На этом уровне описания среда рассматривается как «черный ящик» и задача реологии сводится к проведению ключевых опытов, раскрывающих связь между входными (деформации) и выходными (напряжения) сигналами. Но внутренняя орга-низация исследуемой среды при этом остается скрытой. Концептуальная реология (или микрореология) выводит реологические соотношения теоре-тическим путем, опираясь на достижения физики и химии. В настоящее время наиболее развит структурно-кинетический подход, согласно которому процессы разрушения и восстановления структурных связей в жидкости схематично представляются как прямая и обратная! химические реакции, суммарное действие которых описывается некоторым кинетическим уравнением относительно концентрации связей.
Концептуальный подход имеет преимущества в строгости и общности, однако обладает тем недостатком, что может разрешить только огра-ниченный круг проблем. Перефразируя известное замечание , можно сказать, что концептуальная реология решает те задачи, которые может так, как нужно, а феноменологическая реология решает те задачи, которые нужно так, как она может. Преимуществом феноменологического подхода является его высокая прагматическая нацеленность на решение инженерных задач; часто феноменологические модели способствуют обоснованию и мотивировке концептуальных моделей.
При описании реальных сред весьма полезными оказываются представления об идеальных телах, проявляющих простейшие реологические свойства: упругость, пластичность и вязкость. В качестве материальных носителей этих свойств можно представить себе соответственно сталь, пластилин и воду. Конечно, каждое вещество в реальности обладает всеми реологическими свойствами, хотя и в различной степени. Так, если сталь подвергнуть напряжению порядка 108 Па, то она начинает проявлять пластические свойства. Поэтому реальные материалы представляются в виде некоторых комбинаций трех фундаментальных идеальных тел. В литературе идеальные тела принято называть именами ученых, которые ввели их впервые: упругое тело называется телом Гука (Нооке, 1635-1703 гг.), пластическое - телом Сен-Венана (St. Venant, 1797-1886 гг.), вязкое - телом Ньютона (I. Newton, 1642-1726 гг.).
Каждый материал характеризуется двумя реологическими уравне-ниями: одним для объемных деформаций (под действием всестороннего равномерного сжатия) и другим - для деформаций формоизменения (под последними чаще всего понимаются сдвиговые деформации). Классическая реология предполагает, что при всестороннем давлении все материалы (и твердые и жидкие) ведут себя как идеально упругие тела. Это предположение в большинстве случаев является весьма хорошим прибли-жением, но при объемном деформировании структурных жидкостей могут проявить себя объемная вязкость и релаксация, нарушающие его справед-ливость.
Наиболее ярко реологическое различие между сталью и пластилином проявляется при сдвиговых деформациях. Математически это различие в поведении при сдвиге можно выразить, рассматривая мысленно призмы, вырезанные из разных материалов .
1.1.1. Упругое тело
Прежде всего рассмотрим малую призму из стали, находящуюся под действием тангенциальной силы F, приложенной к верхней горизонтальной грани (рис.1.1)Очевидно величина сдвига призмы определяется углом ,образованным вертикальными и скошенными боковыми гранями. Поскольку то в качестве меры сдвига можно использовать именно это отношение (здесь U- смещение верхней грани, Н -высота призмы). Путем перехода к бесконечно малым величинам величину сдвига можно определить как
Дополнительная информация
Гипотеза Ньютона о линейной связи между тангенциальным напряжением и скоростью сдвига оказалась очень удобным приближением, справедливым для абсолютного большинства низкомолекулярных жидкостей, склонных к структурообразованию (суспензий, эмульсий, растворов полимеров, красок, «тяжелых нефтей», глинистых растворов и т. д.), были обнаружены многочисленные отклонения от закона Ньютона. Такие жидкости называются неньютоновскими, и для них реологическая кривая (или, как часто говорят, кривая течения) не является линейной, т. е. вязкость не остается постоянной, а зависит от скорости сдвига или от предыстории деформации материала.
Типичным примером неньютоновских жидкостей являются полимерные системы, в которых длинные гибкие макромолекулы, зацепляясь друг за друга, образуют некую пространственную структуру («сетку»), резко повышающую вязкость. Под действием сдвиговых деформаций часть структурных связей разрушается, что приводит к уменьшению вязкости.
Отметим тот факт, что Пуазейль был по профессии медиком и интересовался прохождением крови через малые кровеносные сосуды. Сейчас известно, что кровь не является ньютоновской жидкостью, поэтому автор опыта, экспериментально подтвердившего (на примере воды) предположение Ньютона, в каком то смысле является одновременно и одним из первых исследователей неньютоновских сред.
Неньютоновские жидкости могут быть разбиты на три группы.
1. Среды, в которых касательное напряжение является нелинейной функцией мгновенного значения скорости сдвига (нелинейно-вязкие жидкости).
2. Среды, в которых связь между напряжением и скоростью сдвига зависит от времени или предыстории процесса (жидкости с нестационарными реологическими характеристиками).
3. Среды, проявляющие упругое восстановление формы после снятия напряжений (вязкоупругие жидкости).
Отметим, что это деление в достаточной мере условно. Вообще, любая реологическая классификация не абсолютно и сохраняет смысл лишь в определенной области применения. Так, реологические характеристики вязкоупругих жидкостей зависят от предыстории, поэтому их можно было бы отнести и ко второй группе. В связи с этим среды второй и третьей групп часто объединяют единым термином «жидкости с памятью». С другой стороны, процессы разрушения и восстановления структуры всегда требуют некоторого времени, поэтому жидкость может быть отнесена к первой группе только в том случае, если этим временем можно пренебречь. Вполне «НЬЮТОНОВСКИЕ» в обычных условиях смазочные масла проявляют заметную вязкоупругость при сверхвысоких давлениях и скоростях сдвига, реализуемых при работе подшипников. Даже такая типичная ньютоновская жидкость, как вода, приобретает пластические свойства в тонких адсорбционных пленках.
Типичным примером неньютоновских жидкостей являются полимерные системы, в которых длинные гибкие макромолекулы, зацепляясь друг за друга, образуют некую пространственную структуру («сетку»), резко повышающую вязкость. Под действием сдвиговых деформаций часть структурных связей разрушается, что приводит к уменьшению вязкости.
Отметим тот факт, что Пуазейль был по профессии медиком и интересовался прохождением крови через малые кровеносные сосуды. Сейчас известно, что кровь не является ньютоновской жидкостью, поэтому автор опыта, экспериментально подтвердившего (на примере воды) предположение Ньютона, в каком то смысле является одновременно и одним из первых исследователей неньютоновских сред.
Неньютоновские жидкости могут быть разбиты на три группы.
1. Среды, в которых касательное напряжение является нелинейной функцией мгновенного значения скорости сдвига (нелинейно-вязкие жидкости).
2. Среды, в которых связь между напряжением и скоростью сдвига зависит от времени или предыстории процесса (жидкости с нестационарными реологическими характеристиками).
3. Среды, проявляющие упругое восстановление формы после снятия напряжений (вязкоупругие жидкости).
Отметим, что это деление в достаточной мере условно. Вообще, любая реологическая классификация не абсолютно и сохраняет смысл лишь в определенной области применения. Так, реологические характеристики вязкоупругих жидкостей зависят от предыстории, поэтому их можно было бы отнести и ко второй группе. В связи с этим среды второй и третьей групп часто объединяют единым термином «жидкости с памятью». С другой стороны, процессы разрушения и восстановления структуры всегда требуют некоторого времени, поэтому жидкость может быть отнесена к первой группе только в том случае, если этим временем можно пренебречь. Вполне «НЬЮТОНОВСКИЕ» в обычных условиях смазочные масла проявляют заметную вязкоупругость при сверхвысоких давлениях и скоростях сдвига, реализуемых при работе подшипников. Даже такая типичная ньютоновская жидкость, как вода, приобретает пластические свойства в тонких адсорбционных пленках.
Другие работы
Моделирование и выполнение свадебной прически
GnobYTEL
: 24 июля 2013
В каждом из нас живет неистребимое желание к переменам в собственной внешности. Легче всего это сделать, изменив прическу.
В своей дипломной работе я хочу рассказать об уходе за волосами, показать красоту и великолепие лучшего украшения человека – волос.
Прекрасные волосы, данные нам природой, надо уложить в прическу, чтобы выявить и подчеркнуть их красоту, игру цвета, здоровый блеск. Мало того, что волосы лучшее украшение человека, волосы еще отражают и характер. Прямые воло
5 руб.
Вариант 41 по метрологии
anderwerty
: 1 июня 2015
1. Выбрать класс точности прибора для измерения параметра 300С с точностью +/-0.5С
2. Прибор имеет пределы измерений -50 ед +100 ед. Абсолютная погрешность измерения ед. Определить относительную погрешность при измерении параметра -25ед и +25 ед.
3. Термометр класса точности 1,0 предназначен для работы в нормальной области температур (20±5)0С и рабочей областью температур ±500С. Функция влияния равна 0,2% при изменении температуры на 100С. Найти действительное значение погрешности термометра п
120 руб.
Текст на украинском языке-Компоновка и совершенствование узлов буровой установки на 4800 метров-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин
lelya.nakonechnyy.92@mail.ru
: 21 октября 2017
Текст на украинском языке-Компоновка и совершенствование узлов буровой установки на 4800 метров-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин
Дипломная работа выполнена в соответствии с заданными расчетными
значениями. В ней:
1. . Коротко описано назначения и конструкция буровой установки Уралмаш 4-Э, предназначенной для бурения средне глубоких и глубоких скважин . Рассмотренны факторы, что влияют на роботу и выбор буровой установки.
2. Тщательно рассмотрены особен
1843 руб.
Экзамен. билет № 2. Основы построения инфокоммуникационных систем и сетей.
DEKABR1973
: 4 декабря 2018
1. Виды сигналов. Основные определения, относящиеся к цифровым сигналам данных. (Информационный параметр, элемент ЦСД, значащие позиция, момент, интервал, единичный элемент и интервал.)
2. Частотное разделение каналов. Структурная схема, принцип работы.
3. Двоичная последовательность на входе ПКУ при приеме ОФМ сигнала методом сравнения полярностей 100110010001. Какая последовательность передавалась
100 руб.