Борьба с песком при эксплуатации ШСНУ на Олейниковском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Борьба с песком при эксплуатации ШСНУ на Олейниковском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
Все большая часть мировых запасов углеводородного сырья прихо-дится на долю продуктивных пластов в слабых породах, подверженных раз-рушению при разработке, проявляющемуся в выносе песка из скважин. До-быча из многих скважин, вскрывших такие запасы, осуществляется уже намного дольше, чем ожидалось, и дальнейшая их эксплуатация может при-вести к разупрочнению пластов. По этой причине компании-операторы про-являют растущий интерес к экономически эффективным методам устранения выноса песка из скважин путем ремонта существующих или установки новых систем предотвращения выноса песка там, где они отсутствовали.
Добыча флюидов из слабосцементированных пластов практически все-гда сопровождается выносом песка (пескопроявлениями). Это может приве-сти к снижению темпа отбора, повреждению оборудования на поверхности и в скважине и росту эксплуатационных затрат. Песок образуется в результате двухступенчатого процесса под действием сдвиговых напряжений, разру-шающих породу пласта. Пластовые флюиды затем переносят выкрошенный песок в ствол скважины, из которого он выносится на поверхность или осе-дает где-либо в скважинной системе. С миграцией песка также связаны и фа-зовые изменения флюида, особенно при прорывах воды.
Было сделано множество попыток точно объяснить взаимосвязь между прорывом воды и разрушением пласта. Одно из объяснений заключается в том, что, поскольку большинство песчаных продуктивных пластов смачива-ется водой, прорыв воды вызывает падение капиллярного давления из-за по-вышенного насыщения смачивающей фазой.
Поскольку капиллярное давление удерживает зерна вместе, прорыв воды способствует выносу песка. По сути, низкая водонасыщенность пласта соответствует высокому капиллярному давлению, высокая водонасыщен-ность—низкому капиллярному давлению, а отсутствие воды — нулевому ка-пилляр-ному давлению, потому что в этом случае имеется только одна жид-кая фаза.
Другая теория говорит о том, что при прорыве воды через пласт про-исходит снижение относительной нефте- и газопроницаемости. Операторы-разработчики реагируют на это увеличением депрессии на пласт для под-держания уровня добычи углеводородов, что инициирует перемещение мел-ких частиц в пласте. Вода также увеличивает вязкость добываемых флюидов и повышает гидравлическое сопротивление скелета породы, увеличивая од-новременно несущую способность поровой жидкости и помогая, таким обра-зом, проталкивать мелкие частицы сквозь пласт.
Наконец, большинство специалистов сходятся во мнении, что взаимо-связь между прорывом воды и выносом песка изучена плохо и, вероятно, обуславливается целым рядом факторов.
Отрицательное влияние песка в продукции сводится к абразивному из-носу плунжерной пары, клапанных узлов и образованию песчаной пробки на забое. Песок также при малейшей негерметичности НКТ быстро размыва-ет каналы протекания жидкости в резьбовых соединениях, усиленно изнаши-вает штанговые муфты и внутреннюю поверхность НКТ, особенно в искрив-ленных скважинах. Даже при кратковременных остановках (до 10-20 мин) возможно заклинивание плунжера в насосе, а при большом осадке – и закли-нивание штанг в трубах. Увеличение утечек жидкости, обусловленных абра-зивным износом и размывом, приводит к уменьшению подачи ШСНУ и ско-рости восходящего потока ниже приема, что способствует ускорению обра-зования забойной пробки. А забойная пробка существенно ограничивает приток в скважину. Снижение дебита вследствие износа оборудования и об-разования песчаной пробки вынуждает проведение преждевременного ре-монта для замены насоса и промывки скважины. К “песочным” скважинам относят скважины с содержанием песка более 1 г/л.
При разработке пластов, сложенных рыхлыми, слабо сцементирован-ными породами (особенно песчаники), в призабойной зоне разрушается ске-лет пласта. В этом случае жидкость и газ во время движения по пласту увле-кают в скважину некоторое, а иногда весьма значительное количество песка. Если скорость недостаточна для подъема песчинок, то они осаждаются на за-бое, скапливаются, образуя пробку, частично или полностью перекрываю-щую отверстия фильтра, прекращая доступ жидкости из пласта. Иногда вы-сота песчаной пробки достигает несколько десятков и даже сотен метров. Для возобновления нормальной эксплуатации скважины возникает необходи-мость в очистке забоя от скопившегося песка.
Ликвидацию песчаных пробок проводят промывкой скважин водой, различными жидкостями, газожидкостными смесями, пенами, продувкой воздухом, очисткой скважины с помощью струйного насоса, желонки или гидробура.
Своевременное и качественное удаление песчаной пробки приводит к улучшению работы эксплуатационного оборудования и увеличению добычи нефти на месторождении.
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Характеристика фонда скважин
На 2013 год характеристика фонда скважин по Олейниковскому месторождению составила: эксплуатационный фонд - 31, по способам эксплуатации: фонтанных - 3; газлифтных нет; ШСНУ - 28, действующих 28, бездействующие - 3, в консервации нет; контрольных - 2; нагнетатель-ных нет; поглощающих для сброса сточных вод - 5; в ожидании лик-видации нет, ликвидированы после эксплуатации - 27.
Нефтяная залежь I блока эксплуатировалась 13 скважинами, из них 3 скважины фонтанные №139, 248, 252.
Скважина № 139 отделена от остальных скважин разрывным нарушением, абсолютная отметка фильтра 969 – 975 м, газовый фактор 40 м3/т, обводненность 90 %, дебит по жидкости 84 м3/сут, по нефти 7 т/сут. С увеличением обводненности скважина начала периодически са-мозадавливаться, увеличилось время простоя скважины. Протяженность нефтепровода до трапной установки 1 км, а так как содержание парафина и смол достигает до 9% давление в нефтепроводе поднялось до 1 МПа. Пери-одические тепловые обработки давали кратковременный эффект. Поэтому принято решение обвязать данную скважину на отдельную емкость с целью снижения противодавления на пласт и лучшего выноса воды. В течении 8 месяцев скважина работает без единой остановки, обводненность 85 %, дебит по жидкости 95 м3/сут, по нефти 11,8 т/сут. Дополнительно добыто нефти за 8 месяцев 1152т.
В скважине 252 с целью снижения обводненности были изолиро-ваны интервалы с абсолютными отметками 960 – 961 м и 965 – 958 м. Перфорирован интервал 956 – 958 м в результате проведенных работ дебит скважины по нефти увеличился с 0,4 до 5,1 т/сут.
Газовый фактор в течении года постепенно снижался и в ноябре составил 35 м3/т, пластовое давление в течении года практически не ме-нялось, осталось примерно на уровне прошлого года - 10,05 – 10,08 МПа. Однако обводненность постепенно увеличилась и достигнув кри-тического значения 99 % скважина начала самозадавливаться. Проведен-ные изоляционные работы позволили снизить обводненность до 87 % и таким образом получить прирост добычи до 4,7 т/сут.
Скважина 248 в течении I квартала работала с высокой обводнен-ностью до 99 %, газовый фактор 35 м3/т, пластовое давление не снижа-лось и составило 10,05 МПа. Дебиты колебались от 1,5 до 2 т/сут. Од-нако скважина периодически самозадавливается и в целом простои за три месяца составили 12 дней. С целью снижения обводненности продук-ции были произведены изоляционные работы.
Прикровельная часть пласта изолированна и вскрыта середина пласта с абсолютными отметками 956 – 958 м. Результатом работы стало снижение обводненности до 84 %, дополнительно добыто нефти за ме-сяц 400 т, среднесуточный дебит по нефти 13 тонн.
Таким образом, причина остановки скважин фонтанного фонда одна, это увеличение обводненности, и, как следствие, увеличение забойного дав-ления.
Критическое значение обводненности по I блоку 98–99 % при таком значении скважины начинают самозадавливаться. Одно из мероприятий по снижению обводненности в ОАО “ЛУКОЙЛ-Астраханьнефть” проведение изоляционных работ с последующим переводом скважины на фонтанный отбор. В 2012 году скважины № 139, 248, 252 Олейниковского место-рождения были переведены на данный режим работы с суточным отбо-ром 100 – 120 м3/сут. В результате наблюдалось снижение обводненности с 98 – 99 % до 84 – 85 %.
В таблице 2.1 представим технологический режим работы фонтан-ных скважин I блока Олейниковского месторождения.
ВВЕДЕНИЕ
Все большая часть мировых запасов углеводородного сырья прихо-дится на долю продуктивных пластов в слабых породах, подверженных раз-рушению при разработке, проявляющемуся в выносе песка из скважин. До-быча из многих скважин, вскрывших такие запасы, осуществляется уже намного дольше, чем ожидалось, и дальнейшая их эксплуатация может при-вести к разупрочнению пластов. По этой причине компании-операторы про-являют растущий интерес к экономически эффективным методам устранения выноса песка из скважин путем ремонта существующих или установки новых систем предотвращения выноса песка там, где они отсутствовали.
Добыча флюидов из слабосцементированных пластов практически все-гда сопровождается выносом песка (пескопроявлениями). Это может приве-сти к снижению темпа отбора, повреждению оборудования на поверхности и в скважине и росту эксплуатационных затрат. Песок образуется в результате двухступенчатого процесса под действием сдвиговых напряжений, разру-шающих породу пласта. Пластовые флюиды затем переносят выкрошенный песок в ствол скважины, из которого он выносится на поверхность или осе-дает где-либо в скважинной системе. С миграцией песка также связаны и фа-зовые изменения флюида, особенно при прорывах воды.
Было сделано множество попыток точно объяснить взаимосвязь между прорывом воды и разрушением пласта. Одно из объяснений заключается в том, что, поскольку большинство песчаных продуктивных пластов смачива-ется водой, прорыв воды вызывает падение капиллярного давления из-за по-вышенного насыщения смачивающей фазой.
Поскольку капиллярное давление удерживает зерна вместе, прорыв воды способствует выносу песка. По сути, низкая водонасыщенность пласта соответствует высокому капиллярному давлению, высокая водонасыщен-ность—низкому капиллярному давлению, а отсутствие воды — нулевому ка-пилляр-ному давлению, потому что в этом случае имеется только одна жид-кая фаза.
Другая теория говорит о том, что при прорыве воды через пласт про-исходит снижение относительной нефте- и газопроницаемости. Операторы-разработчики реагируют на это увеличением депрессии на пласт для под-держания уровня добычи углеводородов, что инициирует перемещение мел-ких частиц в пласте. Вода также увеличивает вязкость добываемых флюидов и повышает гидравлическое сопротивление скелета породы, увеличивая од-новременно несущую способность поровой жидкости и помогая, таким обра-зом, проталкивать мелкие частицы сквозь пласт.
Наконец, большинство специалистов сходятся во мнении, что взаимо-связь между прорывом воды и выносом песка изучена плохо и, вероятно, обуславливается целым рядом факторов.
Отрицательное влияние песка в продукции сводится к абразивному из-носу плунжерной пары, клапанных узлов и образованию песчаной пробки на забое. Песок также при малейшей негерметичности НКТ быстро размыва-ет каналы протекания жидкости в резьбовых соединениях, усиленно изнаши-вает штанговые муфты и внутреннюю поверхность НКТ, особенно в искрив-ленных скважинах. Даже при кратковременных остановках (до 10-20 мин) возможно заклинивание плунжера в насосе, а при большом осадке – и закли-нивание штанг в трубах. Увеличение утечек жидкости, обусловленных абра-зивным износом и размывом, приводит к уменьшению подачи ШСНУ и ско-рости восходящего потока ниже приема, что способствует ускорению обра-зования забойной пробки. А забойная пробка существенно ограничивает приток в скважину. Снижение дебита вследствие износа оборудования и об-разования песчаной пробки вынуждает проведение преждевременного ре-монта для замены насоса и промывки скважины. К “песочным” скважинам относят скважины с содержанием песка более 1 г/л.
При разработке пластов, сложенных рыхлыми, слабо сцементирован-ными породами (особенно песчаники), в призабойной зоне разрушается ске-лет пласта. В этом случае жидкость и газ во время движения по пласту увле-кают в скважину некоторое, а иногда весьма значительное количество песка. Если скорость недостаточна для подъема песчинок, то они осаждаются на за-бое, скапливаются, образуя пробку, частично или полностью перекрываю-щую отверстия фильтра, прекращая доступ жидкости из пласта. Иногда вы-сота песчаной пробки достигает несколько десятков и даже сотен метров. Для возобновления нормальной эксплуатации скважины возникает необходи-мость в очистке забоя от скопившегося песка.
Ликвидацию песчаных пробок проводят промывкой скважин водой, различными жидкостями, газожидкостными смесями, пенами, продувкой воздухом, очисткой скважины с помощью струйного насоса, желонки или гидробура.
Своевременное и качественное удаление песчаной пробки приводит к улучшению работы эксплуатационного оборудования и увеличению добычи нефти на месторождении.
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Характеристика фонда скважин
На 2013 год характеристика фонда скважин по Олейниковскому месторождению составила: эксплуатационный фонд - 31, по способам эксплуатации: фонтанных - 3; газлифтных нет; ШСНУ - 28, действующих 28, бездействующие - 3, в консервации нет; контрольных - 2; нагнетатель-ных нет; поглощающих для сброса сточных вод - 5; в ожидании лик-видации нет, ликвидированы после эксплуатации - 27.
Нефтяная залежь I блока эксплуатировалась 13 скважинами, из них 3 скважины фонтанные №139, 248, 252.
Скважина № 139 отделена от остальных скважин разрывным нарушением, абсолютная отметка фильтра 969 – 975 м, газовый фактор 40 м3/т, обводненность 90 %, дебит по жидкости 84 м3/сут, по нефти 7 т/сут. С увеличением обводненности скважина начала периодически са-мозадавливаться, увеличилось время простоя скважины. Протяженность нефтепровода до трапной установки 1 км, а так как содержание парафина и смол достигает до 9% давление в нефтепроводе поднялось до 1 МПа. Пери-одические тепловые обработки давали кратковременный эффект. Поэтому принято решение обвязать данную скважину на отдельную емкость с целью снижения противодавления на пласт и лучшего выноса воды. В течении 8 месяцев скважина работает без единой остановки, обводненность 85 %, дебит по жидкости 95 м3/сут, по нефти 11,8 т/сут. Дополнительно добыто нефти за 8 месяцев 1152т.
В скважине 252 с целью снижения обводненности были изолиро-ваны интервалы с абсолютными отметками 960 – 961 м и 965 – 958 м. Перфорирован интервал 956 – 958 м в результате проведенных работ дебит скважины по нефти увеличился с 0,4 до 5,1 т/сут.
Газовый фактор в течении года постепенно снижался и в ноябре составил 35 м3/т, пластовое давление в течении года практически не ме-нялось, осталось примерно на уровне прошлого года - 10,05 – 10,08 МПа. Однако обводненность постепенно увеличилась и достигнув кри-тического значения 99 % скважина начала самозадавливаться. Проведен-ные изоляционные работы позволили снизить обводненность до 87 % и таким образом получить прирост добычи до 4,7 т/сут.
Скважина 248 в течении I квартала работала с высокой обводнен-ностью до 99 %, газовый фактор 35 м3/т, пластовое давление не снижа-лось и составило 10,05 МПа. Дебиты колебались от 1,5 до 2 т/сут. Од-нако скважина периодически самозадавливается и в целом простои за три месяца составили 12 дней. С целью снижения обводненности продук-ции были произведены изоляционные работы.
Прикровельная часть пласта изолированна и вскрыта середина пласта с абсолютными отметками 956 – 958 м. Результатом работы стало снижение обводненности до 84 %, дополнительно добыто нефти за ме-сяц 400 т, среднесуточный дебит по нефти 13 тонн.
Таким образом, причина остановки скважин фонтанного фонда одна, это увеличение обводненности, и, как следствие, увеличение забойного дав-ления.
Критическое значение обводненности по I блоку 98–99 % при таком значении скважины начинают самозадавливаться. Одно из мероприятий по снижению обводненности в ОАО “ЛУКОЙЛ-Астраханьнефть” проведение изоляционных работ с последующим переводом скважины на фонтанный отбор. В 2012 году скважины № 139, 248, 252 Олейниковского место-рождения были переведены на данный режим работы с суточным отбо-ром 100 – 120 м3/сут. В результате наблюдалось снижение обводненности с 98 – 99 % до 84 – 85 %.
В таблице 2.1 представим технологический режим работы фонтан-ных скважин I блока Олейниковского месторождения.
Дополнительная информация
5.2 Выводы и предложения
Экономическая эффективность внедрения мероприятий научно – технического прогресса определяется как превышение стоимости оценки результатов над затратами по внедрению данного мероприятия.
В результате применения систем защиты скважинного оборудования от механических примесей произошло увеличение дебита скважины на 16,4 тонны. Рост дебита скважины привел к повышению объема добычи нефти на 5452 тонну.
Увеличение объема добычи нефти привело к экономии себестоимости одной тонны нефти на 4020,45 руб.
Экономия затрат на добычу нефти позволила получить условно – годовую экономию от применения систем защиты скважинного оборудования от механических примесей в сумме 29,7 тыс. руб. Фактическая сумма прибыли составила 47,6 млн. руб. и превысила сумму прибыли, получаемую до внедрения мероприятия на 42,9 млн. руб.
Удельная прибыль характеризует сумму дохода, приходящуюся на одну тонну нефти, в результате внедрения мероприятия она выросла на 4020,45 руб.
На основании вышеизложенного, можно сделать вывод о экономической целесообразности применения систем защиты скважинного оборудования от механических примесей.
ЗАКЛЮЧЕНИЕ
Активная борьба с выносом песка привлекает все большее внимание в отрасли. Существенный рост цен на нефть и газ и уменьшающееся число новых крупных месторождений придают все больший смысл разработке оставшихся запасов старых месторождений и увеличивают их потенциальную ценность. Операторы, старающиеся избежать рисков и высоких затрат, связанных с приращением запасов путем технологически сложной и дорогостоящей разработки глубоководных и других труднодоступных объектов, считают восстановление продуктивности имеющихся активов особенно привлекательным. Как следствие, компании, ранее больше старавшиеся избавиться от объектов на поздней стадии разработки, вместо того, чтобы направлять свои силы на их восстановление, сегодня трудноизвлекаемые запасы в коллекторах, склонных к пескопроявлениям, могут счесть основным источником прироста запасов.
Интерес к борьбе с выносом песка также поддерживается информацией о существенном приросте запасов за счет неконсолидированных песчаных коллекторов, приводимой в отчетах крупнейших компаний-операторов. Например, всего пару лет назад приблизительно треть добычи, осуществляемой компанией ВР, приходилась на такие коллекторы. Ожидается, что к концу этого десятилетия на такие коллекторы будет приходиться почти половина объема добычи этой компании.
Компания BP сочла это достаточно важным фактом и недавно организовала программу технологического лидерства “Beyond Sand Control” для глобального решения проблемы борьбы с выносом песка на своих активах. Последние данные показывают, что внедрение оперативного мониторинга во время установки систем, которые, возможно, будут созданы в ближайшие несколько лет, и использование растущего отраслевого опыта в разработке и применении систем предотвращения выноса песка приведут к существенному снижению числа случаев повреждений таких систем. Следующим логичным шагом стало бы создание систем с возможностью мониторинга добычи, чтобы операторы могли узнать о перемещении частиц на вскрытой поверхности пласта или о наличии признаков забивания и очагов повреждения. Такие данные, получаемые в реальном времени, также могут использоваться для уточнения представлений о влиянии добычи на пласты и, следовательно, помощи в создании систем и методов для существенного увеличения срока эксплуатации скважины
Экономическая эффективность внедрения мероприятий научно – технического прогресса определяется как превышение стоимости оценки результатов над затратами по внедрению данного мероприятия.
В результате применения систем защиты скважинного оборудования от механических примесей произошло увеличение дебита скважины на 16,4 тонны. Рост дебита скважины привел к повышению объема добычи нефти на 5452 тонну.
Увеличение объема добычи нефти привело к экономии себестоимости одной тонны нефти на 4020,45 руб.
Экономия затрат на добычу нефти позволила получить условно – годовую экономию от применения систем защиты скважинного оборудования от механических примесей в сумме 29,7 тыс. руб. Фактическая сумма прибыли составила 47,6 млн. руб. и превысила сумму прибыли, получаемую до внедрения мероприятия на 42,9 млн. руб.
Удельная прибыль характеризует сумму дохода, приходящуюся на одну тонну нефти, в результате внедрения мероприятия она выросла на 4020,45 руб.
На основании вышеизложенного, можно сделать вывод о экономической целесообразности применения систем защиты скважинного оборудования от механических примесей.
ЗАКЛЮЧЕНИЕ
Активная борьба с выносом песка привлекает все большее внимание в отрасли. Существенный рост цен на нефть и газ и уменьшающееся число новых крупных месторождений придают все больший смысл разработке оставшихся запасов старых месторождений и увеличивают их потенциальную ценность. Операторы, старающиеся избежать рисков и высоких затрат, связанных с приращением запасов путем технологически сложной и дорогостоящей разработки глубоководных и других труднодоступных объектов, считают восстановление продуктивности имеющихся активов особенно привлекательным. Как следствие, компании, ранее больше старавшиеся избавиться от объектов на поздней стадии разработки, вместо того, чтобы направлять свои силы на их восстановление, сегодня трудноизвлекаемые запасы в коллекторах, склонных к пескопроявлениям, могут счесть основным источником прироста запасов.
Интерес к борьбе с выносом песка также поддерживается информацией о существенном приросте запасов за счет неконсолидированных песчаных коллекторов, приводимой в отчетах крупнейших компаний-операторов. Например, всего пару лет назад приблизительно треть добычи, осуществляемой компанией ВР, приходилась на такие коллекторы. Ожидается, что к концу этого десятилетия на такие коллекторы будет приходиться почти половина объема добычи этой компании.
Компания BP сочла это достаточно важным фактом и недавно организовала программу технологического лидерства “Beyond Sand Control” для глобального решения проблемы борьбы с выносом песка на своих активах. Последние данные показывают, что внедрение оперативного мониторинга во время установки систем, которые, возможно, будут созданы в ближайшие несколько лет, и использование растущего отраслевого опыта в разработке и применении систем предотвращения выноса песка приведут к существенному снижению числа случаев повреждений таких систем. Следующим логичным шагом стало бы создание систем с возможностью мониторинга добычи, чтобы операторы могли узнать о перемещении частиц на вскрытой поверхности пласта или о наличии признаков забивания и очагов повреждения. Такие данные, получаемые в реальном времени, также могут использоваться для уточнения представлений о влиянии добычи на пласты и, следовательно, помощи в создании систем и методов для существенного увеличения срока эксплуатации скважины
Похожие материалы
Борьба с песком при эксплуатации ШСНУ на Олейниковском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
as.nakonechnyy.92@mail.ru
: 10 ноября 2017
Борьба с песком при эксплуатации ШСНУ на Олейниковском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
Все большая часть мировых запасов углеводородного сырья прихо-дится на долю продуктивных пластов в слабых породах, подверженных раз-рушению при разработке, проявляющемуся в выносе песка из скважин. До-быча из многих скважин, вскрывших та
1707 руб.
Повышение эффективности разработки Кезского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
lelya.nakonechnyy.92@mail.ru
: 2 ноября 2017
Повышение эффективности разработки Кезского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Дипломный проект исполнен на 132 страницах, использовано 24 таблицы, 17 рисунков, использованных источников - 15.
Кратко охарактеризована геологическая характеристика Кезского месторождения Удмуртской Республики. Произведен ана
1626 руб.
Сбор и подготовка нефти на Вынгапуровском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy_lelya@mail.ru
: 10 ноября 2017
Сбор и подготовка нефти на Вынгапуровском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
На начальном этапе разработки нефтяных месторождений, как прави-ло, добыча нефти происходит из фонтанирующих скважин практически без примеси воды. Однако на каждом месторождении наступает такой период, когда из пласта в
1626 руб.
Нефтекислотный разрыв пласта на Арланском месторождении -Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
lenya.nakonechnyy.92@mail.ru
: 2 ноября 2017
Нефтекислотный разрыв пласта на Арланском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Дипломный проект содержит страниц текста, в том числе таблицы и рисунков.
СКВАЖИНА, СИСТЕМА ЗАВОДНЕНИЯ, ИНТЕНСИФИКАЦИЯ, ДОБЫЧА, НЕФТЕОТДАЧА, ВОДОНАСЫЩЕННОСТЬ, ПРИЗАБОЙНАЯ ЗОНА
В данной работе приведена геологическ
1626 руб.
Повышение эффективности работы системы ППД-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Повышение эффективности работы системы ППД-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
В настоящее время в нефтяной промышленности для повышения неф-теотдачи пластов используются мероприятия по поддержанию пластового давления (ППД). В мировой практике наиболее широкое распространение получил метод, основанный на закачивании в пласт воды через на
1626 руб.
Плазменно-импульсное воздействие на нефтяную залежь-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Плазменно-импульсное воздействие на нефтяную залежь-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Доклад
Скважинная плазменно-импульсная электрогидравлическая технология повышения нефтеотдачи пластов месторождений углеводородов, основана на создании резонансных явлениях в продуктивных пластах.
Особенно сложная задача стоит в пр
1626 руб.
Совершенствование технологии очистки нефтяных резервуаров-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Совершенствование технологии очистки нефтяных резервуаров-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
История возникновения резервуаров в России связана с развитием Ба-кинской нефтяной промышленности. В 17 в. с увеличением добычи нефти в Баку начали возникать нефтяные склады — земляные резервуары (ямы) в глиняных грунтах. Первый стальной клепаный ре
1626 руб.
Разработка и эксплуатация морских месторождений на Каспийском море-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy_lelya@mail.ru
: 10 ноября 2017
Разработка и эксплуатация морских месторождений на Каспийском море-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Доклад
Компания «ЛУКОЙЛ» ведет активную деятельность по освоению месторождений российского сектора Каспийского моря. Результатом геологоразведки, проведенной здесь «ЛУКОЙЛом», стало открытие новой нефтегазоносной про
1626 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.