Высшая математика. Вариант №06.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Контрольная работа №2
Вариант №6
Задание 1. Однородная пластинка имеет форму четырёхугольника (см. рис.). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Найти область сходимости степенного ряда.
Задание 4. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
Задание 5. По заданным условиям построить область в комплексной плоскости.
Задание 6. Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
Вариант №6
Задание 1. Однородная пластинка имеет форму четырёхугольника (см. рис.). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Найти область сходимости степенного ряда.
Задание 4. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
Задание 5. По заданным условиям построить область в комплексной плоскости.
Задание 6. Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
Похожие материалы
Контрольная работа по дисциплине: «Высшая математика (часть 2)». Вариант №06.
leha373
: 16 марта 2023
1. Однородная пластина имеет форму четырехугольника. Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2. Найти общее решение дифференциального уравнения
3. Найти область сходимости степенного ряда
4. Вычислить с точностью до 0,001 значение определенного интеграла, разлагая подынтегральную функцию в степенной ряд
5. По заданным условиям построить область в комплексной плоскости
6. Вычислить значение функции комплексного переменного, результат п
450 руб.
Высшая математика
abuev
: 7 сентября 2021
8 вар
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциальною уравнения.
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0.001 значение определённого интеграла, разлагая по
800 руб.
Высшая математика.
Egor69
: 22 августа 2021
Вариант №5
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника. Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральн
400 руб.
Высшая математика
Юрий14
: 17 марта 2021
Контрольная работа № 2
Высшая математика вариант 7
СИБГУТИ
Содержание
1 Задание 1 3
2 Задание 2 3
3 Задание 3 4
4 Задание 4 4
5 Задание 5 5
6 Задание 6 6
7 Задание 7 6
200 руб.
Высшая математика
cegizmund
: 12 октября 2020
Вариант 08
Однородная пластина имеет форму четырехугольника (см. рису-
нок). Указаны координаты вершин. С помощью двойного интеграла
вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание 3. Степенные ряды
Задание 4. Приближенные вычисления с
помощью разложения функции в ряд
Задание 5. Линии и области в комплексной
плоскости
Задание 6. Функции комплексного пере-
менного
√6 1 + i.
380 руб.
Высшая математика
Ekatherina
: 5 апреля 2020
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Высшая математика (часть 1)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 30.01.2020
Рецензия:Уважаемый
хорошая работа, существенных замечаний нет.
Советую конвертировать работу в пдф перед отправкой.
Храмова Татьяна Викторовна
350 руб.
Высшая математика
Фрося
: 25 февраля 2020
СОДЕРЖАНИЕ
Контрольная работа по теме «Интегрирование функции одной переменной»…..3
Контрольная работа по теме «дифференциальные уравнения»…………………..16
250 руб.
Высшая математика
tatacava1982
: 20 ноября 2019
. Решить систему уравнений методом Крамера
{█(x+y-z=1@8x+3y-6z=2@4x+y-3z=3)
Запишем систему в виде:
A = 1 1 -1
8 3 -6
4 1 -3
BT = (1,2,3)
Определитель:
∆ = 1*(3*(-3)-1*(-6))-8*(1*(-3)-1*(-1))+4*(1*(-6)-3*(-1)) = 1
Замена - 1-й столбец матрицы А на вектор результата В.
1 1 -1
2 3 -6
3 1 -3
∆1 = (-1)1+1a11∆11 + (-1)2+1a21∆21 + (-1)3+1a31∆31 =
=1*(3*(-3)-1*(-6))-2*(1*(-3)-1*(-1))+3*(1*(-6)-3*(-1)) = -8
x=∆_1/∆=(-8)/1=-8
Замена - 2-й столбец матрицы А на вектор результата В.
1 1 -1
8 2 -6
4
100 руб.
Другие работы
Дисциплина «Математический анализ». Часть №3. ВАРИАНТ №4
jenyaptaha
: 20 декабря 2017
1. Найти область сходимости степенного ряда
2. Разложить функцию в ряд Фурье на данном отрезке (период Т)
3. Начертить область на комплексной плоскости по данным условиям:
, , , .
4. Вычислить интеграл по дуге от точки до точки
, -прямая, ,
5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
100 руб.
Механика жидкости и газа СПбГАСУ 2014 Задача 4 Вариант 98
Z24
: 1 января 2026
Круглое отверстие в вертикальной стенке закрытого резервуара с водой перекрыто сферической крышкой. Радиус сферы R = (0,5 + 0,02·y) м. угол α = (120 + 0,1·z)º, глубина погружения центра тяжести отверстия H = (1,0 + 0,1·y) м.
Определить давление воды на крышку, если на свободной поверхности рм = (147 + 0,2·z) = 148,8 кПа (рис. 4).
200 руб.
КОНТРОЛЬНАЯ РАБОТА По дисциплине: «Техника микропроцессорных систем в коммутации: Управляющие комплексы узлов коммутации». Вариант №23.
teacher-sib
: 25 ноября 2016
Задача №1
Для сети емкостью N номеров определить количество линий к серверу речевых сообщений и необходимый объем памяти для хранения речевых сообщений при следующих исходных данных: удельная нагрузка y (Эрл), доля возникающей нагрузки, направленной к серверу речевой почты – KP (%); тип включения линий – полнодоступное.
Исходные данные.
N = 143 тыс. номеров; y = 0,025 Эрл; КР = 1,6%.
Задача №2
Изобразить схему организации межпроцессорного взаимодействия по обще станционной шине (ОШС). Опреде
100 руб.