Теория сложностей вычислительных процессов и структур. Билет №14
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет No14
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 31
2 3 12
3 7 26 52
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&2&3&4&1&7@2&0&4&3&1&1@3&4&0&3&0&0@4&3&3&0&6&2@1&1&0&6&0&2@7&1&0&2&2&0))
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 31
2 3 12
3 7 26 52
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&2&3&4&1&7@2&0&4&3&1&1@3&4&0&3&0&0@4&3&3&0&6&2@1&1&0&6&0&2@7&1&0&2&2&0))
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 03.06.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 03.06.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Похожие материалы
Теория сложности вычислительных процессов и структур. Экзамен. Билет №14.
Cole82
: 8 октября 2015
Билет №14
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. См. рисунок.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамиче
75 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Теория сложности вычислительных процессов и структур 8 билет
Владислав161
: 5 октября 2023
Экзамен
По дисциплине “Теория сложности вычислительных процессов и структур”
400 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Владислав161
: 5 октября 2023
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
300 руб.
Теория сложности вычислительных процессов и структур Билет 5
maksim3843
: 6 марта 2023
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Комментарии: Уважаемый студент, дистанционного обучения,
300 руб.
Теория сложностей вычислительных процессов и структур. Билет №9
IT-STUDHELP
: 29 декабря 2021
Билет No9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 21 27
2 4 14
3 7 24 52
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) д
380 руб.
«Теория сложности вычислительных процессов и структур». Билет №8
boeobq
: 29 ноября 2021
Требования к выполнению заданий.
Билет состоит из двух задач, решение которых необходимо осуществить «вручную», без программирования. Ответ должен быть подготовлен в трехдневный срок и выслан в адрес центра.
Задание 1.
С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
Исходные д
230 руб.
Другие работы
Оценка эффективности деятельности розничного торгового предприятия на основе оценки его конкурентоспособности
alfFRED
: 10 ноября 2013
Содержание
Введение
1 Теоретические положения оценки эффективности деятельности коммерческого предприятия
1.1 Анализ существующих методов оценки конкурентоспособности коммерческого предприятия
1.2 Анализ существующих методов оценки конкурентоспособности розничного торгового предприятия
2 Практическая оценка эффективности деятельности розничного торгового предприятия2
2.1 Расчёт группового показателя конкурентоспособности по показателям экономической эффективности
2.2 Расчёт группового по
10 руб.
Контрольная работа №1. Английский язык ( 1-й семестр)
siberian
: 13 сентября 2018
Контрольная работа
I. Переведите следующие предложения, выбирая правильный артикль: определённый, неопределённый или нулевой (отсутствие артикля).
1. Can you tell me … way to the nearest supermarket?
2. He does his best to speak … English fluently.
3. In my opinion, the government do not do enough to help … homeless.
4. What did you have for … breakfast this morning?
5. … women live longer than … men.
II. Переведите следующие предложения, обращая внимание на модальные глаголы.
1. You mus
50 руб.
ТЭЦ. Контрольная работа. Вариант №17
anderwerty
: 6 мая 2014
Вариант 17
1. Исходными данными для расчета выпрямителя являются:
• номинальное выпрямленное напряжение на нагрузке Ud=15В;
• ток нагрузки Id=2А;
• допустимый коэффициент пульсаций выходного напряжения на
нагрузке kп =0,04;
• частота питающей сети f=50Гц ;
• количество фаз n=1 ;
• номинальное напряжение, подаваемое на первичную обмотку
трансформатора U1=220В.
2. Выбор выпрямителя
2.1. Расчет параметров сглаживающего фильтра
2.2. Тип нагрузки R.
2.2.1. Расчет параметров трансформатора
2.3. Постро
70 руб.
Сушилка распылительная (сборочный чертеж)
maobit
: 31 июля 2018
Распылительные сушилки применяют для получения сухих порошкообразных или гранулированных материалов из жидкотекучих растворов или суспензий. Их отличают: высокое качество получаемого продукта вследствие малого термического воздействия на материал в процессе сушки; возможность регулирования конечных свойств как термостойких, так и термолабильных материалов; высокая производительность и экономичность; технологическая простота ввиду отсутствия таких промежуточных стадий, как кристаллизация, ф
499 руб.