Теория сложностей вычислительных процессов и структур. Билет №14

Состав работы

material.view.file_icon 2E99B215-DC24-4C9F-A75E-2AF1F6E1E439.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет No14
 Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 31
2 3 12 
3 7 26 52

2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&2&3&4&1&7@2&0&4&3&1&1@3&4&0&3&0&0@4&3&3&0&6&2@1&1&0&6&0&2@7&1&0&2&2&0))

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 03.06.2020
Рецензия:Уважаемый ,

Галкина Марина Юрьевна

Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Теория сложности вычислительных процессов и структур. Экзамен. Билет №14.
Билет №14 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. См. рисунок. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамиче
User Cole82 : 8 октября 2015
75 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №14.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта выбирается по последней цифре пароля
User Владислав161 : 5 октября 2023
300 руб.
Теория сложности вычислительных процессов и структур Билет 5
Билет No5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 040764 401327 010541 735037 624302 471720 Комментарии: Уважаемый студент, дистанционного обучения,
User maksim3843 : 6 марта 2023
300 руб.
Теория сложностей вычислительных процессов и структур. Билет №9
Билет No9 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 6 21 27 2 4 14 3 7 24 52 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) д
User IT-STUDHELP : 29 декабря 2021
380 руб.
promo
«Теория сложности вычислительных процессов и структур». Билет №8
Требования к выполнению заданий. Билет состоит из двух задач, решение которых необходимо осуществить «вручную», без программирования. Ответ должен быть подготовлен в трехдневный срок и выслан в адрес центра. Задание 1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). Исходные д
User boeobq : 29 ноября 2021
230 руб.
«Теория сложности вычислительных процессов и структур». Билет №8
Финансовое право. Синергия. Тест.
Финансовое право. Синергия. Тест. 48 вопросов с ответами. Перед покупкой убедитесь что вопросы вам подходят. 2023 год. 3 страницы . 1. Обязательства государства, возникающие в иностранной валюте, - это ... 2. Определение основ составления и рассмотрения проектов бюджетов всех уровней бюджетной системы РФ, утверждения и исполнения бюджетов всех уровней бюджетной системы РФ, утверждения отчетов об их исполнении и осуществления контроля за их исполнением относится к ведению ... 3. Определение пере
User ProF3206 : 15 января 2023
200 руб.
Вариант 11. Контрольная работа (лабораторные работы) Технические методы и средства защиты информации
Лабораторная работа 1 - «Изучение принципа работы нелинейного локатора» Лабораторная работа 2 - «Электрические фильтры нижних и высоких частот» Лабораторная работа 3 - «Полосовые и заграждающие электрические фильтры» Лабораторная работа 4 - «Изучение и расчет помех в каналах связи электронного устройства при внешней параллельной паразитной связи» Лабораторная работа 5 - «Изучение помех в каналах связи электронного устройства при внешней паразитной связи последовательного вида»
User costafel : 3 апреля 2017
500 руб.
Подвеска - А6ГР.01.16.00.000 СБ
Сапельников А.А. Инженерная графика. Вариант 16 - Подвеска В состав работы входит: -3D модели всех деталей; -3D сборка; -3D сборка с разносом компонентов; - Чертежи всех деталей; - Чертежи стандартных изделий; -Сборочный чертеж; -Спецификация. А6ГР.01.16.00.000 СБ - Подвеска Сборочный чертеж А6ГР.01.16.01.000 СБ - Корпус сварной Сборочный чертеж А6ГР.01.16.00.001 - Щека А6ГР.01.16.00.002 - Проушина А6ГР.01.16.01.001 - Корпус А6ГР.01.16.01.002 - Серьга А6ГР.01.16.01.003 - Втулка резьбовая Болт
User .Инженер. : 14 декабря 2022
250 руб.
Подвеска - А6ГР.01.16.00.000 СБ promo
Струбцина - Вариант 12. Сборочный чертеж
Выполнить сборочный чертеж струбцины по чертежам его деталей и описанию устройства. На главном виде сборочного чертежа скобу 1 расположить так, как она изображена на главном виде чертежа детали. Масштаб сборочного чертежа 1:1. Назначение и устройство струбцины. Струбцина служит для плотного соединения двух деталей и предотвращения их смещения друг относительно друга. В отверстие 32 скобы 1 сверху впрессовывается втулка 2 до заплечиков. В отверстие М16 втулки ввинчивается винт 3 На нижний сфери
User .Инженер. : 17 июня 2025
400 руб.
Струбцина - Вариант 12. Сборочный чертеж promo
up Наверх