Страницу Назад
Поискать другие аналоги этой работы

1200

Курсовая работа по дисциплине: Волоконно-оптические системы передачи (ВОСП). Вариант №35

ID: 217138
Дата закачки: 11 Апреля 2021
Продавец: IT-STUDHELP (Напишите, если есть вопросы)
    Посмотреть другие работы этого продавца

Тип работы: Работа Курсовая
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
1 ОСНОВЫ ПОСТРОЕНИЯ ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ

1. Что принято понимать под волоконно-оптической системой передачи?
2. Какой диапазон электромагнитных волн (частот) получил наибольшее применение в оптических системах передачи?
3. Какой физический смысл у показателя преломления?
4. Какие характеристики имеют стекловолокна?
5. Какие оптические диапазоны определены для улучшенных волокон стандарта G.652?
6. Чем принципиально отличаются волокна SMF и NZDSF?
7. В чем физический смысл «запрещённой зоны» полупроводниковых материалов?
8. Почему соединение GaAs может использоваться для изготовления источников и приёмников оптического излучения ВОСП?
9. Чем отличаются прямозонные и непрямозонные материалы?
10. Какие функции может выполнять p-n переход в оптических приборах при прямом и обратном смещении?
11. Какие устройства могут входить в состав ВОСП?
12. Какие функции выполняет оптический конвертор ВОСП?

Задача 1
Рассчитать затухание, дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов формата NRZ в волоконно-оптической системе с длиной секции L (км), километрическим затуханием a (дБ/км) на длине волны излучения передатчика l0 (мкм), ширине спектра излучения Dl0,5(нм) на уровне половины максимальной мощности излучения. Для указанной длины оптической секции и типа волокна определить ПМД. Данные для задачи приведены в табл.1.1 и 1.2. Определить мощность оптического излучения в волокне на выходе секции, если на входе подключен оптический генератор с уровнем мощности +5дБм на заданной длине волны λ0. Привести рисунок изменения уровня сигнала от начала волокна (передатчик) к концу волокна (приёмник).

Таблица 1.1
Параметр Предпоследняя цифра номера пароля
 3
Длина оптической секции, км 128

Таблица 1.2
Параметр Последняя цифра номера пароля
 5
Тип волокна True Wave
Коэфф. затухания α, дБ/км 0,26
Длина волны λ0, мкм  1,54
Спектральная линия ∆λ0,5, нм 0,4
Коэфф. хроматической дисперсии σхр, пс/(нм· км) 3,7

True Wave, "Истинная волна" – одномодовое оптическое волокно со смещённой ненулевой дисперсией (Lucent Technologies), коэффициент ПМД σпмд= 0,1 пс/√км;


2 Оптические компоненты для систем передачи и
оптических сетей

1. Какие разновидности пассивных компонентов применяются в составе оптических систем передачи?
2. Какие виды оптических волновых мультиплексоров обеспечивают максимальное число объединяемых волн?
3. Каким образом может осуществляться волновое демультиплексирование (разделение оптических волн)?
4. Какие виды оптических коммутационных устройств могут использоваться в составе оптических систем передачи, кроссовых коммутаторов и маршрутизаторов?
5. Какие из оптических коммутаторов характеризуются наивысшим быстродействием?
6. Как устроен и действует оптический вентиль?
7. Где применяются оптические вентили в составе систем передачи?
8. Какие функции выполняют оптические фильтры?
9. Какое назначение у конверторов длин волн?
10. Какое назначение имеют оптические разветвители и аттенюаторы?
11. Какое назначение имеют компенсаторы дисперсии?
12. Что представляют собой оптические мультиплексоры OADM и ROADM?
13. Какие функции выполняют интерливинговые фильтры в ВОСП?

Задача 2
Определить число оптических каналов на каждой из оптических секций мультиплексирования в цепочке, состоящей из 2-х терминальных WDM мультиплексоров и Х (число по варианту табл. 2.1) промежуточных оптических мультиплексоров типа ROADM. Внутри каждой пары оптических мультиплексоров организовано Y (число по варианту табл. 2.2) оптических каналов. Определить по данным приложения и привести характеристики интерфейса одного оптического канала (по варианту табл.2.1).

Таблица 2.1 - Число мультиплексоров

Параметр Предпоследняя цифра номера пароля
 3
Число мультиплексоров ROADM, Х
Условный номер 5
3
Каждому условному номеру соответствует интерфейс (приложение 3):
3 - DN100S-1D2(с)F

Таблица 2.2 - Число каналов

Параметр Последняя цифра номера пароля
 5
Число каналов внутри каждой пары мультиплексоров Y 7

3 Источники оптического излучения для систем
передачи

1. Какие требования предъявляются к источнику оптического излучения?
2. Чем отличаются конструкции и характеристики торцевого (суперлюминесцентного) и поверхностного светодиодов для оптической связи?
3. Какие конструкции лазеров применяются в технике оптической связи?
4. Что представляет собой резонатор Фабри – Перо и какие он имеет характеристики?
5. Как устроен полупроводниковый гетеролазер с резонатором Фабри – Перо и как формирует когерентное излучение?
6. Каким образом в лазерах достигается одномодовый режим генерации?
7. Почему и какими средствами стабилизируют температурный режим работы лазера?
8. Как можно перестроить длину волны излучения одномодового лазера?
9. Что показывает диаграмма направленности излучения светодиода и лазера?
10. Чем согласуют источники излучения с волоконными световодами и атмосферой?

Задача 3
Определить характеристики многомодового лазера с резонатором Фабри – Перо (FP) и одномодового лазера с распределенной обратной связью (DFB).
Определить число мод в лазере FP, для которых выполняется условие возбуждения в полосе длин волн Dl при длине резонатора L и показателе преломления активного слоя n.
Определить частотный интервал между модами и добротность резонатора на центральной моде lО при коэффициенте отражения R.
Изобразить конструкцию полоскового лазера FP. Изобразить модовый спектр.
Определить частоту и длину волны генерируемой моды в одномодовом лазере DFB для известных значений дифракционной решетки m и длины лазера L. Оценить диапазон перестройки DFB лазера при изменении nэ в пределах ±5%. Изобразить конструкцию лазера DFB. Исходные данные приведены в табл. 3.1-3.4.

Таблица 3.1 - Длина резонатора
Параметр лазера FP
 Предпоследняя цифра номера пароля
 3
L, мкм 290

Таблица 3.2 - Параметры лазера FP
Параметр лазера FP Последняя цифра номера пароля
 5
Δλ, нм 50
n 3,65
λ0, мкм 0,47
R 0,3

Таблица 3.3 - Длина конструкции DFB
Параметр лазера DFB
 Предпоследняя цифра номера пароля
 3
L, мкм 240

Таблица 3.4 - Параметры лазера DFB
Параметр лазера DFB
 Последняя цифра номера пароля
 5
Порядок решетки m 6
Шаг решетки, d, мкм 0,5
Показатель преломления, nэ 3,9


4 Модуляция излучения источников электромагнитных волн оптического диапазона

1. Что такое модуляция?
2. В чем состоит принципиальное отличие прямой и внешней модуляций оптического излучения?
3. В чем заключается сущность прямой модуляции в схемах с полупроводниковыми источниками оптического излучения?
4. Почему полоса частот при прямой модуляции ограничена?
5. Почему происходит искажение сигналов при прямой модуляции?
6. Чем отличаются модуляционные характеристики схем с лазером и светодиодом?
7. Какие виды внешней модуляции оптического излучения применяются в системах передачи?
8. Чем отличается электрооптический внешний модулятор от электроабсорбционного?
9. Какие виды внешней модуляции оптического излучения обеспечиваются модулятором Маха-Зендера?
10.Какие шумы образуются при модуляции?
11.Как уменьшить нелинейные искажения при модуляции?
12.Как устроен передающий оптический модуль?
13.С какой целью в состав передающего оптического модуля вводятся термодатчик и терморегулятор?
14.Какие электрические и оптические характеристики имеет передающий оптический модуль?
15. Что обозначает оптический нелинейный предел Шеннона?
16. Какие форматы оптической модуляции увеличивают спектральную эффективность?
17. От чего зависит скоростная ёмкость линии передачи?

Задача 4.1
По данным табл. 4.1 построить зависимость выходной мощности источника оптического излучения от величины электрического тока, протекающего через него. Для заданных (по варианту) тока смещения и амплитуды модулирующих однополярных импульсов (табл. 4.2 и 4.3) определить графически изменение выходной модуляционной мощности Рмакс и Рмин и определить глубину модуляции h. По построенной характеристике указать вид источника (светодиод или лазер?).

Таблица 4.1 - Ватт-амперная характеристика
I, мА 0 5 10 15 18 20 22 24 26 28
P, мкВт 0 15 30 45 60 90 160 230 310 370

Таблица 4.2 - Ток смещения

Параметр
 Предпоследняя цифра номера пароля
 3
Ток смещения, мА 12

Таблица 4.3 - Амплитуда тока модуляции

Параметр
 Последняя цифра номера пароля
 5
Амплитуда тока модуляции, мА 7

Задача 4.2

Для модулятора Маха-Зендера (см. раздел 4.3.3 учебного пособия) рассчитать и построить передаточную (модуляционную) характеристику по варианту согласно табл. 4.4. Выбрать на построенной характеристике напряжение начального смещения с учётом амплитуды и полярности модулирующего сигнала, представленного по варианту в табл.4.5. Показать на рисунке изменение относительной величины оптической мощности при модуляции (пример на рис.4.28). По рисунку определить глубину модуляции.

Таблица 4.4 - Полуволновое напряжение MZM
Параметр Предпоследняя цифра номера пароля
Полуволновое напряжение Vπ, В 3
 13

Таблица 4.5 - Модулирующий сигнал
Параметр Последняя цифра номера пароля
 5
Амплитуда, В 2
Форма импульсная 


Полярность ±

5 Фотоприёмники для оптических систем передачи

5.1. Определение фотодетектора. Виды фотодетекторов. Требования к фотодетекторам.
5.2. Фотодиоды конструкции p-i-n. Принцип действия, основные характеристики.
5.3. Лавинные фотодиоды. Конструкции, принцип действия, основные характеристики. Преимущества ЛФД.
5.4. Фотодиоды конструкции TWP.
5.5. Шумы фотодиодов. Эквивалентная шумовая схема фотодиода.

Задача 5
Построить график зависимости чувствительности фотодетектора от длины волны оптического излучения по данным табл. 5.1. Используя график и данные табл. 5.2 и 5.3 определить величину фототока на выходе p-i-n фотодиода. По графику определить длинноволновую границу чувствительности фотодетектора. Определить материал для изготовления прибора.

Таблица 5.1 - Спектральная чувствительность
Чувствительность, А/Вт 0,28 0,32 0,43 0,53 0,58 0, 65 0,73 0,64 0,1
Длина волны, мкм 0,85 1 1.1 1,2 1,3 1,4 1,5 1,6 1,78
Таблица 5.2 - Мощность излучения

Параметр
 Предпоследняя цифра номера пароля
 3
Мощность излучения, мкВт 1.5


Таблица 5.3 - Длина волны по варианту
Параметр
 Последняя цифра номера пароля
 5
Длина волны, λ, мкм 1,29

6. Фотоприёмные устройства оптических систем передачи

1. Чем отличается прямое фотодетектирование от фотодетектирования с преобразованием?
2. Какие функциональные блоки входят в схему фотоприемного устройства (ФПУ) с прямым детектированием?
3. Какие виды предварительных усилителей применяются в фотоприёмных устройствах?
4. Из каких элементов состоит входная цепь фотоприёмного устройства с прямым детектированием?
5. Как устроена входная цепь фотоприёмного устройства детектирования с преобразованием?
6. Как соотносятся между собой электрическая и оптическая полосы частот пропускания ФПУ?
7. Чем определяется величина соотношения сигнал/шум на выходе ФПУ?
8. Чем выполняется противошумовая коррекция в ФПУ?
9. Чем отличается гомодинный приёмник сигнала от гетеродинного в ФПУ с преобразованием?
10. Что используется для детектирования оптического сигнала с фазовой и квадратурной модуляцией?

Задача 6
Определить полосу пропускания и отношение сигнал/шум для фотоприёмного устройства, содержащего интегрирующий (ИУ) или трансимпедансный (ТИУ) усилитель и фотодетектор (ЛФД или p-i-n).
Исходные данные по вариантам приведены в табл. 6.1 и 6.2.

Таблица 6.1 - Параметры ФПУ
Параметр Предпоследняя цифра номера пароля
 3
Тип ФД ЛФД
Тип усилителя ТИУ
Rэ, кОм 110
Сэ, пФ 0,15
ηвн 0.85
M 20
Fш(M) 6
T 300
Dш 3.5
Кус 120

Таблица 6.2 - Параметры секции передачи
Параметр
 Последняя цифра номера пароля
 5
Pпер, дБм +4
L, км 60
α, дБ/км 0,23

7. Оптические усилители для оптических систем передачи


1. На каких физических явлениях основаны оптические усилители?
2. Какие типы усилителей могут применяться в оптических системах передачи?
3. Как устроены и действуют полупроводниковые оптические усилители?
4. Из каких устройств состоят и как действуют волоконные усилители на основе рассеяния Рамана?
5. Как устроены и действуют усилители на примесном волокне (на примере Er+)?
6. Какими характеристиками описывают оптические усилители?
7. В каких частях оптических систем передачи могут использоваться усилители?
8. Какие шумы и искажения имеют место в оптических усилителях?
9. Какие реальные коэффициенты усиления обеспечивают полупроводниковые и волоконные оптические усилители?
10. В чем преимущество рамановских оптических усилителей?

Задача 7
Определить длину взаимодействия L излучения накачки в рамановском усилителе, при которой коэффициент распределенного усиления G= (по варианту табл.7.1), при соответствующей мощности накачки Pн, площади модового пятна А и рамановском коэффициенте усиления материала g (табл.7.2).
Таблица 7.1 - Параметры волокна усилителя
Параметр
  Предпоследняя цифра номера пароля
 3
Pн, Вт 2.5
А, мкм2 45
G, дБ 5

Таблица 7.2 - Коэффициент рамановского усиления
Параметр
 Последняя цифра номера пароля
 5
g, ×10-14 м/Вт 5


8. Линейные тракты оптических систем передачи

1. Какие разновидности линейных трактов существуют в оптических системах передачи?
2. Чем ограничены возможности использования атмосферных оптических линейных трактов?
3. Какие различия имеют одноволновые оптические линейные тракты ВОСП?
4. Какие различия имеют многоволновые (многоканальные) оптические линейные тракты ВОСП-WDM?
5. Какие функции выполняет транспондер?
6. Чем отличаются сетки частот и волн DWDM и CWDM?
7. Какие требования предъявляются к линейным кодам ВОСП?
8. Чем отличаются форматы RZ и NRZ в линейных кодах ВОСП?
9. Чем отличаются коды 1В2В от кодов mBnB?
10. В чем сущность скремблированных линейных кодов?
11. В чем сущность коэффициента битовых ошибок BER или Кош?
12. С какой целью нормируют BER?
13. Какие устройства линейного тракта ВОСП способствуют увеличению BER?
14. Чем определяется длина регенерационного участка ВОСП?
15. Какие устройства могут входить в состав линейного тракта многволновой ВОСП?
16. От каких факторов зависит величина OSNR в оптическом канале ВОСП-WDM?
17. Что подлежит расчёту или оценке при проектировании сложных линейных трактов ВОСП-WDM?
18. С какой целью в ВОСП используется оценка Q-фактора?
19. С какой целью в ВОСП используется FEC?
20. Какие разновидности оптических интерфейсов относят к стандартным?
21. Что нормируется в одноволновых и многоволновых оптических интерфейсах?
22. Какими устройствами реализуются оптические интерфейсы?

Задача 8.1.
Используя приложения 1 конспекта лекций для оптических интерфейсов аппаратуры SDH, определенных рекомендациями МСЭ-Т G.957 и G.691, определить по варианту (табл.8.1 и 8.2) предельную дальность передачи по двум типам волокон без промежуточных регенератров, но с возможным использованием оптических усилителей и компенсаторов хроматической дисперсии. Также определить минимальное расстояние между оптическим передатчиком и оптическим приёмником заданного интерфейса для исключения перегрузки приёмника.

Таблица 8.1 - Интерфейсы и линии
Параметр
 Предпоследняя цифра номера пароля
 3
Интерфейс U16.2
Строительная длина кабеля, км 3.5
Затухание на стыке длин, lS, дБ 0,06
Затухание на разъёмном стыке, lC, дБ 0,3

Таблица 8.2 - Удельные значения затухания и дисперсии
Параметр Последняя цифра номера пароля
 5
Тип волокна 1 G.652
αс, дБ/км 0,24
σхр, пс/нм×км 16,0
Тип волокна 2 G.655
αс, дБ/км 0,25
σхр, пс/нм×км 8,1
Тип волокна 1 имеет коэффициент σпмд=0,02пс/√км.
Тип волокна 2 имеет коэффициент σпмд=0,04пс/√км.

Задача 8.2
Для заданного количества оптических каналов в ВОСП-WDM и OSNR (табл.8.3) каждого канала определить минимальный допустимый уровень передачи одного канала и максимальный допустимый уровень всех каналов в стекловолокне при использовании на промежуточных станциях Mус – эрбиевых усилителей с усилением A и с коэффициентом шума NF (табл.8.4). Для скоростей передачи цифровых данных в формате NRZ 2,5 Гбит/с и 10 Гбит/с считать шум спонтанной эмиссии нормированным к полосе 0,1нм и равным -58дБ. Построить диаграмму уровней передачи и изменения OSNR в оптическом канале.

Таблица 8.3 - Оптические каналы, скорости и требуемый OSNR

Параметр Предпоследняя цифра номера пароля
 3
Число оптических каналов и скорость передачи в каждом, Гбит/с 10
10
Допуск OSNR, дБ 23

Таблица 8.4 - Параметры оптических усилителей

Параметр Последняя цифра номера пароля
 5
Число оптических усилителей Mус 9
Коэффициент усиления А, дБ 24
Коэффициент шума NF, дБ 5,6


9. Мультиплексирование в оптических системах передачи

1. Какие виды мультиплексирования используются в оптических системах передачи?
2. Какие циклы передачи (по длительности и ёмкости) создаются при мультиплексировании PDH?
3. В чем сущность мультиплексирования PDH?
4. Какой цикл PDH создаётся синхронно, а какие плезиохронно?
5. Какие цифровые блоки создаются при мультиплексировании SDH?
6. Что представляет собой цикл STM-N в SDH (по структуре и скорости передачи)?
7. Какие цифровые блоки SDH создаются синхронным мультиплексированием?
8. В чем сущность мультиплексирования ATM?
9. Какие виды цифрового и оптического мультиплексирования применяются в OTH?
10. Какие скоростные режимы передачи цифровых данных могут поддерживаться в оптических каналах OTH?
11. Чем принципиально отличаются скорости и циклы передачи OTH и SDH?
12. В чем сущность мультиплексирования Ethernet?
13. Чем отличаются кадры Ethernet от ячеек АТМ?
14. Сколько ступеней мультиплексирования предусмотрено в Ethernet?
15. Чем отличаются кадры разных ступеней мультиплексирования Ethernet?

Задача 9
Определить число подряд следующих циклических транспортных структур технологии SDH или OTH (по варианту табл.9.1 и 9.2), которые необходимы для переноса заданного числа кадров Ethernet PBT. Определить общее время передачи этих кадров. Изобразить цепочку преобразования этих кадров в соответствующие структуры оптической передачи.

Таблица 9.1 - Кадры Ethernet

Параметр Предпоследняя цифра номера пароля
 3
Общее число кадров Ethernet PBT 92

Таблица 9.2 - Транспортные структуры

Параметр Последняя цифра номера пароля
 5
Транспортные структуры OPU3

10. Волоконно-оптические системы с перспективными решениями и нанофотонные технологии

1. Что следует отнести к основным направлениям развития техники ВОСП?
2. Что представляет собой оптический солитон?
3. Почему в стекловолокне может образоваться оптический солитон?
4. Почему солитон сохраняет свою форму при распространении по оптической линии на большие расстояния?
5. Какую длительность имеет оптический солитон в стекловолокне?
6. Как должны соотноситься длительность солитона и период следования солитонов?
7. Какие устройства должны входить в состав солитонной системы передачи?
8. Каким образом импульсы информационного сигнала преобразуются в солитоны?
9. Каким образом солитоны преобразуются в импульсы информационного сигнала?
10. Почему солитоны при распространении по стекловолокну могут оказаться неустойчивыми и "рассыпаться"?
11. Какие скорости передачи могут быть реализованы с помощью солитонов?
12. Что представляют собой фотонные кристаллы?
13. Где можно использовать фотонные кристаллы в составе ВОСП?
14. Какие технологии называют нанофотонными?
15. Какие нанофотонные компоненты можно применить в ВОСП?
16. Какое назначение имеют волокна MCF?
17. Какие разновидности сердцевин могут входить в состав MCF?
18. Чем ограничивается количество сердцевин в MCF?
19. Что мультиплексируется в волокна FMF?
20. Какое обозначение имеют моды в волокнах FMF?
21. Что называют оптическим суперканалом?
22. В чём преимущество суперканальной организации оптической связи?
23. Какие типовые форматы имеют оптические суперканалы?
24. Какое отношение имеет flex grid к суперканалам?
25. Что представляют собой фотонные интегральные схемы (PIC)?
26. Какие скоростные режимы передачи поддерживают схемы PIC для суперканалов?
27. В чём состоит обработка высокоскоростных сигналов в когерентных оптических приёмниках?
28. Что следует понимать под гибкостью оптических систем передачи?
29. Какими средствами можно добиться максимальной пропускной способности волоконно-оптических линий?
30. Какими средствами достигается петабитовая скорость в ВОСП?

Задача 10
Определить достижимую скорость в системе передачи с заданными по варианту параметрами: полоса частот канала DWDM; диапазон волн для организации связи; число и вид нагрузочных сигналов (SDH, Ethernet); тип волокна и число сердцевин в волокне.
Таблица 10.1 - Волновые диапазоны и каналы

Параметр Предпоследняя цифра номера пароля
 3
Полоса частот канала DWDM, ГГц 35
Вид нагрузочных сигналов STM 256
Диапазон волн С


Таблица 10.2- Сигналы и волокна
Параметр Последняя цифра номера пароля
 5
Число нагрузочных сигналов 18
Тип волокна и число сердцевин FMF4
1

Примечание: FMF2, FMF4 – маломодовые волокна на 2 и 4 моды.

Комментарии: Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Волоконно-оптические системы передачи (ВОСП)
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 11.04.2021
Рецензия: Уважаемый,


Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com

Размер файла: 2,6 Мбайт
Фаил: Microsoft Word (.doc)
-------------------
Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные!
Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот.
-------------------

   Скачать

   Добавить в корзину


        Коментариев: 0


Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Волоконно-оптические системы передачи / Курсовая работа по дисциплине: Волоконно-оптические системы передачи (ВОСП). Вариант №35
Вход в аккаунт:
Войти

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
UnionPay СБР Ю-Money qiwi Payeer Крипто-валюты Крипто-валюты


И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках


Сайт помощи студентам, без посредников!