Лабораторные работы №№1-3 по дисциплине: Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант №9

Состав работы

material.view.file_icon
material.view.file_icon лаб2.doc
material.view.file_icon лаб3.doc
material.view.file_icon лаб1.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Лабораторная работа 1
1. Цель работы.

Ознакомление с упрощенной процедурой обработки результатов прямых измерений с многократными наблюдениями. Получение, применительно к упрощенной процедуре, навыков обработки результатов наблюдений, оценка погрешностей результатов измерений и планирование количества наблюдений.

2. Программа лабораторной работы.

2.1.Выполненить многократные независимые наблюдения в автоматическом режиме.
2.2.Произвести автоматизированную упрощенную процедуру обработки результатов многократных независимых наблюдений.
2.3.Оформить полученные результаты в отчете.
2.4.Провести анализ и сделать выводы по работе.

3. Сведения, необходимые для выполнения работы

Для обработки результатов многократных наблюдений могут быть использованы различные процедуры. Стандартная методика весьма трудоемка, причем, далеко не всегда можно выполнить серию наблюдений, объем которой достаточен для выявления закона распределения случайной составляющей погрешности и применения стандартной методики. Кроме того, если неисключенный остаток систематической погрешности сравнительно велик, выполнение длинной серии наблюдений для максимального уменьшения влияния случайной составляющей погрешности теряет смысл.
Упрощенная процедура обработки результатов прямых измерений с многократными наблюдениями применяется, если число наблюдений n≤30. При использовании этой процедуры за результат измерения также как и всегда принимают среднее арифметическое результатов исправленного ряда наблюдений, которое вычисляют по формуле[2,стр.6]:
x ̄=1/n ∑_(i=1)^n▒x_i     (1)
где – i-й исправленный результат наблюдения,
среднее арифметическое исправленного ряда наблюдений,
n – количество результатов наблюдений.
Затем вычисляют оценку СКО результата наблюдений S по формуле[2,стр.7]:
S=√((∑_(i=1)^n▒〖(x_i-x ̄)^2 〗)/(n-1))≈σ    (2)
Эта величина является приближенной оценкой среднего квадратического отклонения σ – параметра нормального закона распределения. Чем больше наблюдений проведено, тем точнее эта оценка.
Для расчета оценки среднего квадратического отклонения результата измерения S(x ̄) используют формулу[2,стр.7]:
S(x ̄)=S/√n     (3)
Оценка среднего квадратического отклонения S(x ̄) является основной характеристикой величины случайной погрешности результата измерений.
Для нахождения границ доверительного интервала случайной составляющей погрешности результата измерений в рассматриваемом случае необходимо проанализировать априорную информацию об объекте измерений и условиях проведения измерений. Если явно выраженных причин, способных привести к отклонению закона распределения результатов наблюдений от нормального, не выявлено, то доверительные границы находят с помощью квантилей распределения Стьюдента по формулам[2,стр.7]:
x_H=x ̄-t*S(x ̄)
x_B=x ̄+t*S(x ̄)  ,   (4)
где x_H и x_B– соответственно координаты нижней и верхней границ доверительного интервала,
t – квантиль распределения Стьюдента, определенный для доверительной вероятности P_д
Если на результат измерений оказывает влияние только случайная составляющая погрешности, то этот результат представляют в видеx_H,x_B,P_д.
Часто имеет место ситуация, когда на результат измерений оказывают влияние две составляющие, а именно: погрешность средства измерений и случайная составляющая погрешности, вызванная внешними факторами. Погрешность средства измерений оценивают по его классу точности, а случайную составляющую погрешности, вызванную внешними факторами, оценивают с помощью приведенной выше методики. В этом случае при определении результирующей границы погрешности результата измерений возникает задача суммирования погрешностей. В теории измерений показано, если составляющие погрешности независимы, справедливо следующее соотношение[2,стр.8]:
Δ_∑=√(Δ_1^2+Δ_2^2 ) (5)
где Δ_∑– граница результирующей абсолютной погрешности, Δ_1 и Δ_2 – границы отдельных составляющих абсолютных погрешностей, причем, если модуль одной из составляющих превышает модуль другой составляющей более чем в 8 раз, то влиянием меньшей составляющей на результирующую погрешность можно пренебречь.
Если доверительная вероятность для границ погрешности средства измерений не указана, то при расчетах ее можно принимать равной P_д=0,95 (МИ 1552-86). Результат измерений представляют в виде: x ̄±Δ_∑;P_д, при этом числовое значение результата измерений должно оканчиваться цифрой того же разряда, что и округлённое значение границы абсолютной погрешностиΔ_∑.
Из формулы 3 видно, что по мере того, как количество наблюдений растет, вклад случайной составляющей погрешности в окончательный результат постепенно уменьшается и может настать момент, когда вклад случайной погрешности в общую погрешность измерений станет пренебрежимо мал. Ясно, что в этом случае дальнейшее увеличение количества наблюдений бессмысленно. Таким образом, измерения с многократными наблюдениями оправданы не всегда, а при их планировании полезно заранее оценить требуемый объем выборки. В противном случае трудоемкость измерений может оказаться неоправданно высокой, а увеличение точности - незначительным.

4. Описание электронного цифрового мультиметра.

Модель электронного цифрового мультиметра служит для измерения постоянного тока и напряжения, измерения среднеквадратических значений тока и напряжения в цепях переменного тока синусоидальной формы, измерения сопротивления по постоянному току. Ниже приведены некоторые характеристики модели[2,стр.16]:
•  в режиме измерения постоянного и переменного напряжения пределы измерения могут выбираться в диапазоне от 1,0 мВ до 300 В;
•  при измерении напряжения могут быть установлены следующие поддиапазоны: от 0,0.мВ до 199,9 мВ; от 0,000 В до 1,999 В; от 0,00 В до 19,99 В; от 0,0 В до 199,9 В; от 0 В до 19,99 В.
 диапазон рабочих-частот от 20 Гц до 100 кГц;
 пределы допускаемых значений основной относительной погрешности при измерении напряжения равны:
δ=±[0",05" +"0,02" (U_K/U-1)]%
- при измерении переменного напряжения во всем диапазоне частот, где UK - конечное значение установленного предела измерений. U - значение измеряемого напряжения на входе мультиметра.
На лицевой панели модели (рис.3) расположены :
 тумблер (1) «ВКЛ» включения питания со световым индикатором;
 четырехразрядный индикатор (2) цифрового отсчетного устройства;
 кнопка (3) «<-» со световым индикатором для выбора меньшего рабочего предела;
 кнопка (4) «->» со световым индикатором для выбора большего рабочего предела;
 кнопка (5) автоматического выбора предела работы «АВП» со световым индикатором;
 группа кнопок (6) выбора рода работы (при измерении постоянного напряжения должна быть нажата кнопка «U=») со световыми индикаторами;
 электрические разъемы (7) для подключения к электрической цепи;
 световые индикаторы (8) значения измеряемого напряжения «кило В», «В», «мили В», «микро В».

Рис. 1. Внешний вид модели электронного цифрового мультиметра

5. Схема соединения приборов:










6. Измерительная задача

Исходные данные:

Вариант: 09

Номера наблюдений 10...14;
Доверительная вероятность Р=0,900;
Класс точности γ=0,04%

i, No
наблюдения 10 11 12 13 14
f, Гц 114,27 114,24 114,26 114,23 114,28

Лабораторная работа 2

1. Цель работы.
1.1. Изучить методы поддержания единства измерений.
1.2. Изучить способы нормирования погрешностей средств измерений.
1.3. Изучить методику обработки результатов измерений с многократными наблюдениями.
1.4. Приобрести практические навыки измерения напряжения аналоговыми вольтметрами.
1.5. Освоить методику оценки случайной составляющей погрешности (неопределенности) средств измерений.
1.6. Приобрести навыки оценки погрешности средств измерений по метрологическим характеристикам.

2. Программа лабораторной работы.
2.1. Провести многократные наблюдения напряжения аналоговыми вольтметрами для определения зависимости погрешности (неопределенности) вольтметра от его показаний.
2.2. Оценить случайную и систематическую составляющие погрешности единичных измерений аналоговым вольтметром путем обработки полученных результатов наблюдений.
2.3. Найти границы суммарной погрешности единичных измерений аналоговым вольтметром и отобразить их графически в зависимости от показания вольтметра.
2.4. Вычислить пределы основных допускаемых абсолютных погрешностей вольтметра, отобразить их на графике фактических границ суммарной погрешности аналогового вольтметра.
2.5. Произвести сравнение результатов экспериментальных исследований погрешности аналогового вольтметра с метрологическими характеристиками прибора. Сделать вывод о пригодности вольтметра к применению.


Лабораторная работа 3


1. Цель работы
1.1. Изучить:
1.1.1 Параметры переменных напряжений и токов;
1.1.2 Методы измерения параметров переменных напряжений и токов;
1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров;
1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока;
1.1.5 Источники погрешности при измерении электронными вольтметрами.
1.2. Получить навыки работы с измерительными приборами.
1.3.Приобрести умение обрабатывать и оформлять результаты измерений, выполненных с помощью электронных вольтметров.

2. Программа лабораторной работы.

2.1. Изучение основных метрологических характеристик электронных вольтметров.
2.2. Исследование частотных характеристик вольтметров переменного тока
2.3. Измерение параметров напряжения сигнала произвольной формы:
•  среднеквадратическое значение;
•  средневыпрямленное значение;
•  пиковое значение;
2.4. Измерение значений коэффициентов амплитуды, формы и усреднения сигналов различной формы.

3. Описание лабораторного стенда
Лабораторный стенд, (рис. 3.1), представляет собой LabVIEW компьютерную модель, отображаемую на экране персонального компьютера.
На стенде находятся модели:
электромагнитного (1) и электродинамического (2) вольтметров;
электронного вольтметра (3) с пиковым преобразователем, проградуированного в средневыпрямленных значениях гармонического напряжения;
электронных милливольтметров средневыпрямленного (4) и среднеквадратического (5) значения;
электронного осциллографа (6);
генератора сигналов специальной формы (7).

Дополнительная информация

Оценка: Зачет
Дата оценки: 16.11.2021

Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант №9
Вариант No9 Задача No 1 Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения. Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить: 1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля . 2. Оценку среднего квадратиче
User IT-STUDHELP : 14 июня 2021
580 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант №9 promo
Лабораторная работа №3 по дисциплине «Метрология, стандартизация и сертификация в инфокоммуникациях». Вариант №9
1. Цель работы 1.1. Изучить: 1.1.1 Параметры переменных напряжений и токов; 1.1.2 Методы измерения параметров переменных напряжений и токов; 1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров; 1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока; 1.1.5 Источники погрешности при измерении электронными вольтметрами. 1.2. Получить навыки работы с измерительными приборами. 1.3.Приобрести умение обрабатывать и оформлять результаты
User Андрей124 : 22 февраля 2021
90 руб.
Лабораторная работа №3 по дисциплине: Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант №9
Лабораторная работа №3 «Измерение напряжения электрических сигналов» 1. Цель работы 1.1. Изучить: 1.1.1 Параметры переменных напряжений и токов; 1.1.2 Методы измерения параметров переменных напряжений и токов; 1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров; 1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока; 1.1.5 Источники погрешности при измерении электронными вольтметрами. 1.2. Получить навыки работы с измерительным
User SibGOODy : 4 августа 2020
450 руб.
promo
Лабораторная работа 1-3 по дисциплине: Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант 5
Лабораторная работа No1.4 По дисциплине: Метрология, стандартизация и сертификация в инфокоммуникациях Упрощенная процедура обработки результатов прямых измерений с многократными наблюдениями 1. Цель работы. Ознакомление с упрощенной процедурой обработки результатов прямых измерений с многократными наблюдениями. Получение, применительно к упрощенной процедуре, навыков обработки результатов наблюдений, оценка погрешностей результатов измерений и планирование количества наблюдений. 2. За
User IT-STUDHELP : 4 апреля 2022
900 руб.
promo
Лабораторные работы №№1-3 по дисциплине: Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант №2
Лабораторная работа 1 Вариант: 02 Таблица No1– Исходные данные к задаче лабораторной работы 1.4 i, No наблюдения 10 11 12 13 14 f, Гц 114,27 114,24 114,26 114,23 114,28 Таблица No2 – Варианты заданий к задаче лабораторной работы 1.4 Предпоследняя цифра номера зачетной книжки (пароля) 0 i, номера наблюдений 10-14 Последняя цифра номера зачетной (пароля) 2 Р - доверительная вероятность 0,950 Класс точности СИ, γ % 0,06 1. Цель работы. Ознакомление с упрощенной процедурой обработки результато
User IT-STUDHELP : 16 ноября 2021
900 руб.
Лабораторные работы №№1-3 по дисциплине: Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант №2 promo
Лабораторная работа №1 по дисциплине «Метрология, стандартизация и сертификация в инфокоммуникациях»
2.1.Выполненить многократные независимые наблюдения в автоматическом режиме. 2.2.Произвести автоматизированную упрощенную процедуру обработки результатов многократных независимых наблюдений. 2.3.Оформить полученные результаты в отчете. 2.4.Провести анализ и сделать выводы по работе.
User Андрей124 : 22 февраля 2021
90 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях
Вопрос No1 За достоверность и объективность результатов испытаний при выдаче сертификата несут ответственность: испытательные лаборатории орган по сертификации госстандарт РФ Вопрос No2 Стандартизация не направлена на достижение цели: безопасность продукции, работ, услуг для жизни и здоровья людей, окружающей среды и имущества экономию всех видов ресурсов унификация разработки (ведения), утверждения (актуализации), изменения, отмены, опубликования и применения документов по стандарт
User IT-STUDHELP : 12 февраля 2022
1500 руб.
promo
Метрология, стандартизация и сертификация в инфокоммуникациях
Вопрос No1 Знак соответствия это: обозначение, служащее для информирования приобретателей, в том числе потребителей, о соответствии объекта сертификации требованиям системы добровольной сертификации зарегистрированный как знак, который маркирует продукцию обозначение, служащее для информирования приобретателей, в том числе потребителей, о соответствии выпускаемой в обращение продукции требованиям технических регламентов Вопрос No2 Как называется значение физической величины, найденное эк
User IT-STUDHELP : 12 февраля 2022
480 руб.
promo
Лабораторная работа №5. По дисциплине Схемотехника. Тема Синтез комбинационной схемы. ЛЭТИ
Лабораторная работа №5. По дисциплине Схемотехника. Тема Синтез комбинационной схемы. Цель работы. Ознакомиться с принципами проектирования и разработки комбинационных цифровых устройств. Спроектировать и разработать схему комбинационного цифрового устройства, предназначенного для управления семисегментным индикатором. Под управлением устройства на индикаторе должны отображаться символы A, B, C, D, E, как это показано в табл. 1. Схема комбинационного цифрового устройства (КЦУ) должна быть пос
User DiKey : 9 апреля 2023
150 руб.
Лабораторная работа №5. По дисциплине Схемотехника. Тема Синтез комбинационной схемы. ЛЭТИ
Задание 13. Вариант 19 - Отрезок
Возможные программы для открытия данных файлов: WinRAR (для распаковки архива *.zip или *.rar) КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d Любая программа для ПДФ файлов. Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007. Задание 13. Вариант 19 - Отрезок По заданным координатам концов отрезка АВ построить его наглядное изображение и комплексный чертеж. Определить положение отрезка относительно плоскостей проекций. В состав выполненной работы входят 2 фа
50 руб.
Задание 13. Вариант 19 - Отрезок
Административно-процессуальное право РФ
К О Н Т Р О Л Ь Н Ы Е В О П Р О С Ы 1. Изучить рекомендованную литературу и дать определение понятию «административный процесс». В чем, по моему мнению, заключается особенность административного процесса? Пояснить на примере свою точку зрения. 2. По произвольной фабуле от имени должностного лица, уполномоченного рассматривать дело об административном правонарушении, вынести постановление о назначении административного наказания по результатам его рассмотрения в соответствии с установле
User Slolka : 30 июля 2013
Проектирование комплексной механизации погрузочно-разгрузочных работ на станции
Выбор типа складов, разработка технологических процессов погрузки и выгрузки грузов и систем комплексной механизации и автоматизации погрузочно-разгрузочных и складских работ Определение вместимости и площади складов, их линейных размеров и размеров погрузочно-разгрузочных фронтов Определение необходимого количества погрузочно разгрузочных работ, штата обслуживающего персонала и времени простоя вагонов и автомобилей под погрузкой и выгрузкой Выбор типа и определение потребного количества автотра
User OstVER : 10 ноября 2013
65 руб.
up Наверх