Лабораторные работы №№1-3 по дисциплине: Теория телетрафика и анализ систем беспроводной связи. Вариант №25
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1
Применение B-формулы Эрланга в сетях с коммутацией каналов
1 Задание в соответствии с вариантом
В лабораторной работе, задавая сетевые параметры в соответствии с вариантом (табл. 1), необходимо произвести расчёт вероятности блокировки P_b (λ/μ,m) по ф. (7.21, [1]) и построить её зависимости от входной нагрузки λ/μ и количества каналов m.
Затем, используя рекуррентное соотношение ф. (7.22, [1]) определить число каналов, необходимое для обеспечения заданного значения вероятности блокировки в соответствии с вариантом (табл. 1). Построить зависимость количества каналов от входной нагрузки λ/μ.
Таблица 1 – Параметры СМО для выполнения лабораторной работы No 1 вариант 25
μ, с-1 50
Диапазон , с-1 50..100
Pb Диапазон m
0.05 10,20..120 25
Лабораторная работа No2
Применение формулы Полячека-Хинчина
1 Задание
В данной лабораторной работе предполагается сравнить вероятностно-временные характеристики систем массового обслуживания типа M/M/1, M/D/1, полученные с помощью формул Полячека-Хинчина с характеристиками СМО, заданного по варианту типа (табл. 2).
Используя данные из табл. 2, задать параметры исследуемых систем массового обслуживания. Вычислить значения нормированной дисперсии исследуемых СМО ф. (8.6). Для вычисления математического ожидания и дисперсии воспользоваться любым справочником по теории вероятностей и математической статистике, например, [5] (или см. ПРИЛОЖЕНИЕ 1).
По ф. (8.7)–(8.10) получить искомые характеристики:
- среднее количество заявок в СМО ̄N;
- среднее количество заявок в очереди СМО ̄(N_q );
- среднее время пребывания заявки в СМО ̄T;
- среднее время ожидания заявкой обслуживания ̄W.
Примечание 5: При этом диапазон изменения интенсивности входящего в СМО потока заявок задать, начиная с 0, и таким образом, чтобы сохранить эргодичность системы (ρ=λ⋅x ̄,ρ<1).
Построить семейство зависимостей описанных выше характеристик от входной нагрузки для различных СМО.
Объяснить полученные результаты.
Таблица 2 – Параметры для выполнения лабораторной работы No 2 вариант 25
μ, с-1 4,5
Дополнительные параметры распределения Распределение времени обслуживания
α=3,0 Парето 25
Лабораторная работа No3
Уравнения глобального баланса
Задание в соответствии с вариантом
Применяя метод составления и решения системы уравнений глобального баланса замкнутой однородной марковской СеМО в соответствии с вариантом (табл. 3), определить узловые характеристики СеМО:
- интенсивности потоков заявок, входящих в узлы;
- коэффициенты загрузки узлов;
- коэффициенты простоя узлов;
- среднее количество заявок в узлах;
- среднее количество заявок в очередях узлов;
- среднее время пребывания заявки в узле;
- среднее время ожидания заявкой обслуживания в узле;
и сетевые характеристики СеМО:
- пропускная способность СеМО;
- среднее количество заявок в очередях СеМО;
- среднее время пребывания заявки в СеМО;
- среднее время ожидания заявкой обслуживания в СеМО.
Сделать выводы по проделанной работе. Например, выявлены ли в результате вычислений узкие места в моделируемой сети, возможно ли решение этих проблем и, если да, то за счёт каких ресурсов и т.п.
Вариант 25
No Схема
6
Считать все СМО – марковскими с дисциплинами обслуживания – FCFS (первым пришёл, первым обслужился или обслуживание в порядке поступления).
Количество заявок в СеМО, состоящих из четырех узлов,K = 2.
μ, c-1 m ТОПОЛОГИЯ
6
2,1; 2,5; 2,8; 3,0 2,3,3,1 25
Применение B-формулы Эрланга в сетях с коммутацией каналов
1 Задание в соответствии с вариантом
В лабораторной работе, задавая сетевые параметры в соответствии с вариантом (табл. 1), необходимо произвести расчёт вероятности блокировки P_b (λ/μ,m) по ф. (7.21, [1]) и построить её зависимости от входной нагрузки λ/μ и количества каналов m.
Затем, используя рекуррентное соотношение ф. (7.22, [1]) определить число каналов, необходимое для обеспечения заданного значения вероятности блокировки в соответствии с вариантом (табл. 1). Построить зависимость количества каналов от входной нагрузки λ/μ.
Таблица 1 – Параметры СМО для выполнения лабораторной работы No 1 вариант 25
μ, с-1 50
Диапазон , с-1 50..100
Pb Диапазон m
0.05 10,20..120 25
Лабораторная работа No2
Применение формулы Полячека-Хинчина
1 Задание
В данной лабораторной работе предполагается сравнить вероятностно-временные характеристики систем массового обслуживания типа M/M/1, M/D/1, полученные с помощью формул Полячека-Хинчина с характеристиками СМО, заданного по варианту типа (табл. 2).
Используя данные из табл. 2, задать параметры исследуемых систем массового обслуживания. Вычислить значения нормированной дисперсии исследуемых СМО ф. (8.6). Для вычисления математического ожидания и дисперсии воспользоваться любым справочником по теории вероятностей и математической статистике, например, [5] (или см. ПРИЛОЖЕНИЕ 1).
По ф. (8.7)–(8.10) получить искомые характеристики:
- среднее количество заявок в СМО ̄N;
- среднее количество заявок в очереди СМО ̄(N_q );
- среднее время пребывания заявки в СМО ̄T;
- среднее время ожидания заявкой обслуживания ̄W.
Примечание 5: При этом диапазон изменения интенсивности входящего в СМО потока заявок задать, начиная с 0, и таким образом, чтобы сохранить эргодичность системы (ρ=λ⋅x ̄,ρ<1).
Построить семейство зависимостей описанных выше характеристик от входной нагрузки для различных СМО.
Объяснить полученные результаты.
Таблица 2 – Параметры для выполнения лабораторной работы No 2 вариант 25
μ, с-1 4,5
Дополнительные параметры распределения Распределение времени обслуживания
α=3,0 Парето 25
Лабораторная работа No3
Уравнения глобального баланса
Задание в соответствии с вариантом
Применяя метод составления и решения системы уравнений глобального баланса замкнутой однородной марковской СеМО в соответствии с вариантом (табл. 3), определить узловые характеристики СеМО:
- интенсивности потоков заявок, входящих в узлы;
- коэффициенты загрузки узлов;
- коэффициенты простоя узлов;
- среднее количество заявок в узлах;
- среднее количество заявок в очередях узлов;
- среднее время пребывания заявки в узле;
- среднее время ожидания заявкой обслуживания в узле;
и сетевые характеристики СеМО:
- пропускная способность СеМО;
- среднее количество заявок в очередях СеМО;
- среднее время пребывания заявки в СеМО;
- среднее время ожидания заявкой обслуживания в СеМО.
Сделать выводы по проделанной работе. Например, выявлены ли в результате вычислений узкие места в моделируемой сети, возможно ли решение этих проблем и, если да, то за счёт каких ресурсов и т.п.
Вариант 25
No Схема
6
Считать все СМО – марковскими с дисциплинами обслуживания – FCFS (первым пришёл, первым обслужился или обслуживание в порядке поступления).
Количество заявок в СеМО, состоящих из четырех узлов,K = 2.
μ, c-1 m ТОПОЛОГИЯ
6
2,1; 2,5; 2,8; 3,0 2,3,3,1 25
Дополнительная информация
Оценка: Зачет
Дата оценки: 19.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 19.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Теория телетрафика и анализ систем беспроводной связи. Вариант №25
IT-STUDHELP
: 19 ноября 2021
Задание
Вариант задания: 25
Пропускная способность канала передачи данных равна:
C_chan=33,60 кбит/с=34406.4 бит/с
Протяженность канала передачи данных равна:
L_chan=10000 км= 10^7 м
Скорость распространения света принимаем:
C=300000 км/с=〖3∙10〗^8 м/с
Функцию распределения случайной величины выбрать равномерной на интервале [1000; 2000] бит.
Функцию распределения случайной величины выбрать равномерной на интервале сек., в предположении, что скорость равномерно распределена на и
800 руб.
Лабораторные работы 1-3 по дисциплине: Теория телетрафика и анализ систем беспроводной связи. Вариант №3
IT-STUDHELP
: 5 декабря 2022
Лабораторная работа No1
по дисциплине:
«Теория телетрафика и анализ систем беспроводной связи»
Задание в соответствии с вариантом
В лабораторной работе, задавая сетевые параметры в соответствии с вариантом (табл. 1), необходимо произвести расчёт вероятности блокировки P_b (λ/μ,m) по ф. (7.21, [1]) и построить её зависимости от входной нагрузки λ/μ и количества каналов m.
Затем, используя рекуррентное соотношение ф. (7.22, [1]) определить число каналов, необходимое для обеспечения заданного зна
1500 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
ЛАБОРАТОРНАЯ РАБОТА 1
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 4
Применение B-формулы Эрланга в сетях с коммутацией каналов
300 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
ЛАБОРАТОРНАЯ РАБОТА 2
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 7
Применение формулы Полячека-Хинчина
450 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
ЛАБОРАТОРНАЯ РАБОТА 2
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 4
Применение формулы Полячека-Хинчина
450 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 4
300 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 7
300 руб.
Теория телетрафика и анализ систем беспроводной связи
KVASROGOV
: 3 декабря 2022
ЛАБОРАТОРНАЯ РАБОТА 1
По дисциплине: Теория телетрафика и анализ систем беспроводной связи
Вариант: 7
Применение B-формулы Эрланга в сетях с коммутацией каналов
300 руб.
Другие работы
Вал коленчатый бурового насоса НБТ-600-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 22 мая 2016
Вал коленчатый бурового насоса НБТ-600-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
297 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2018 год)
SibGOODy
: 20 ноября 2018
Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 5 0 1 7 1)
(5 0 2 3 2 4)
(0 2 0 5 3 1)
(1 3 5 0 4 5)
(7 2 3 4 0 3)
(1 4 1 5 3 0)
2. Имеется склад, на котором присутствует некоторый ассортимент то
350 руб.
Курсовая работа по дисциплине: Оптоэлектроника и нанофотоника. Вариант 30
ditools1
: 17 апреля 2023
1. Задача No 1
Изобразить структуру фотоприемника. Изобразить ВАХ фотоприемника. Дать определение основным параметрам. Пояснить принцип работы фотоприемника. Привести примеры устройств использующих, рассматриваемый Вами фотоприемник.
Вариант 0. Тип фотоприемника (ФП) - Фотодиод на основе р-n перехода.
2. Задача No 2
Определить длинноволновую границу фотоэффекта λгр и фоточувствительность приемника. Изобразить вид спектральной характеристики фотоприемника и указать на ней λгр.
Вариант - 3. Тип П
250 руб.
1-й курс "Английский язык". Зачетная работа
ДО Сибгути
: 24 декабря 2013
Прочтите текст и выполните задания к тексту.
Текст №1
WHAT IS VOIP?
1. Voice Over Internet Protocol (VoIP) is a new technology that uses broadband Internet and network lines to transmit real-time voice information. This technology has the potential for completely changing the way phone calls are made and making phone companies a thing of the past.
2. To make a phone call on the Internet, several things must happen. On the sending side, analog voice signals are digitized, compressed, di
100 руб.