Лабораторной работе №4. Алгоритмы и структуры данных. Тема: Графы. ЛЭТИ.
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра изображений
Описание
Лабораторной работе №4. Алгоритмы и структуры данных.
Тема: Графы. ЛЭТИ.
Вариант 35
Содержание
Введение ........................................................................................................ 3
Задание ........................................................................................................... 3
Постановка задачи и описание решения ..................................................... 3
Контрольные тесты ...................................................................................... 5
Вывод ............................................................................................................. 8
Список использованных источников........................................................... 9
Текст программы ........................................................................................... 10
Цель работы
Исследование алгоритмов для работы с ориентированными графами
Задание
Отыскание кратчайшего пути между заданной парой вершин в произвольном ориентированном графе с нагруженными ребрами
Математическая формулировка: ориентированный граф G = <V, E>, заданный в форме весового списка ребер edge [v, u], который может содержать циклы с отрицательной длиной, и вершина-источник s. Результатом является вектор расстояний d.
Постановка задачи и описание решения
Для алгоритма Форда-Беллмана более удобно представлять граф в виде списка всех рёбер (вектор структур ребра). Для такого алгоритма матрица смежности получается довольно трудно затратной.
Было решено сделать меню, в котором пользователь выбирает характеристики графа: в первом подменю он выбирает, вводить ли ему вручную или позволить компьютеру сгенерировать граф: если пользователь выбрал первый вариант, то он просто вводит данные графа с клавиатуры, иначе выводится следующее меню, в котором пользователь выбирает, какими должны быть числа в графе: положительными или положительными и отрицательными (это было сделано для того, чтобы удостовериться в правильности алгоритма Беллмана - Форда) – в таком случае генерируются однозначные числа (чтобы красиво выводилась “матрица” и наглядно показать действие алгоритма, ведь для демонстрации алгоритма можно использовать и целые числа)
Важное уточнение: если между вершинами связи нет, то вводится и выводится именно ноль
Формируется список ребер размером n*n, где n – кол-во ребер (однако обрабатываться будут только ребра с ненулевым весом, поэтому одна итерация будет повторяться [кол-во ребер] раз)
Заведём массив расстояний d[n], который после обработки будет содержать ответ на задачу: сначала мы заполняем расстояние вершины старта нулем, остальные бесконечностью. Если после действий алгоритма расстояние все равно бесконечности, значит, что эта вершина недостижима
Также в программе была учтена возможность обнаружения отрицательного цикла – такого, что алгоритм может бесконечно улучшать свою оценку, уходя в минус бесконечность.
Для восстановления пути был инициализирован p[n], в котором соответствующие вершины будут хранить предшественника. Алгоритм, предполагая, что кратчайшее расстояние до одной вершины уже посчитано, пытается улучшить кратчайшее расстояние до другой вершины. Следовательно, в момент улучшения нам надо просто запоминать в массиве “предков”, из какой вершины это улучшение произошло.
Общая сложность алгоритма – О(ne), где n – кол-во вершин, e - кол-во ребер, однако в худшем случае она может достигать O(n^3) (так как тройной цикл)
Тема: Графы. ЛЭТИ.
Вариант 35
Содержание
Введение ........................................................................................................ 3
Задание ........................................................................................................... 3
Постановка задачи и описание решения ..................................................... 3
Контрольные тесты ...................................................................................... 5
Вывод ............................................................................................................. 8
Список использованных источников........................................................... 9
Текст программы ........................................................................................... 10
Цель работы
Исследование алгоритмов для работы с ориентированными графами
Задание
Отыскание кратчайшего пути между заданной парой вершин в произвольном ориентированном графе с нагруженными ребрами
Математическая формулировка: ориентированный граф G = <V, E>, заданный в форме весового списка ребер edge [v, u], который может содержать циклы с отрицательной длиной, и вершина-источник s. Результатом является вектор расстояний d.
Постановка задачи и описание решения
Для алгоритма Форда-Беллмана более удобно представлять граф в виде списка всех рёбер (вектор структур ребра). Для такого алгоритма матрица смежности получается довольно трудно затратной.
Было решено сделать меню, в котором пользователь выбирает характеристики графа: в первом подменю он выбирает, вводить ли ему вручную или позволить компьютеру сгенерировать граф: если пользователь выбрал первый вариант, то он просто вводит данные графа с клавиатуры, иначе выводится следующее меню, в котором пользователь выбирает, какими должны быть числа в графе: положительными или положительными и отрицательными (это было сделано для того, чтобы удостовериться в правильности алгоритма Беллмана - Форда) – в таком случае генерируются однозначные числа (чтобы красиво выводилась “матрица” и наглядно показать действие алгоритма, ведь для демонстрации алгоритма можно использовать и целые числа)
Важное уточнение: если между вершинами связи нет, то вводится и выводится именно ноль
Формируется список ребер размером n*n, где n – кол-во ребер (однако обрабатываться будут только ребра с ненулевым весом, поэтому одна итерация будет повторяться [кол-во ребер] раз)
Заведём массив расстояний d[n], который после обработки будет содержать ответ на задачу: сначала мы заполняем расстояние вершины старта нулем, остальные бесконечностью. Если после действий алгоритма расстояние все равно бесконечности, значит, что эта вершина недостижима
Также в программе была учтена возможность обнаружения отрицательного цикла – такого, что алгоритм может бесконечно улучшать свою оценку, уходя в минус бесконечность.
Для восстановления пути был инициализирован p[n], в котором соответствующие вершины будут хранить предшественника. Алгоритм, предполагая, что кратчайшее расстояние до одной вершины уже посчитано, пытается улучшить кратчайшее расстояние до другой вершины. Следовательно, в момент улучшения нам надо просто запоминать в массиве “предков”, из какой вершины это улучшение произошло.
Общая сложность алгоритма – О(ne), где n – кол-во вершин, e - кол-во ребер, однако в худшем случае она может достигать O(n^3) (так как тройной цикл)
Дополнительная информация
2020
Похожие материалы
Лабораторной работе №3. Алгоритмы и структуры данных. Тема: Деревья. ЛЭТИ. 2020
DiKey
: 23 марта 2023
Лабораторной работе №3. Алгоритмы и структуры данных.
Тема: Деревья. ЛЭТИ. 2020
Цель работы
Исследование алгоритмов для работы с двоичным деревом
Задание
В двоичном дереве сделать обратную разметку, обойти дерево в глубину и подсчитать количество левых листьев
Постановка задачи и описание решения
Для представления дерева в памяти предложен естественный способ – разветвляющийся список. Узлы дерева – объекты, связи между которыми осуществляются через указатели. Для создания дерева достаточно объ
75 руб.
Лабораторной работе №5. По дисциплине Алгоритмы и структуры данных. Тема Нахождение кратчайшего пути в графе.
DiKey
: 28 марта 2023
Лабораторной работе No5. По дисциплине Алгоритмы и структуры данных. Тема Нахождение кратчайшего пути в графе.
Цель работы: ознакомление с вариантами реализации алгоритмов на графах на примере задачи поиска кратчайшего пути в неориентированном графе.
Теоретические положения
Алгоритм Беллмана-Форда:
Алгоритм использует метод динамического программирования и формирует решение в виде квадратной матрицы, количество строк и столбцов которой равно количеству вершин графа. Ячейка на пересечении строк
100 руб.
Лабораторной работе №4. По дисциплине Алгоритмы и структуры данных. Тема Построение минимального остовного дерева.
DiKey
: 28 марта 2023
Лабораторной работе №4. По дисциплине Алгоритмы и структуры данных. Тема Построение минимального остовного дерева.
ЦЕЛЬ РАБОТЫ
Ознакомление с вариантами реализации алгоритмов на графах на примере задачи построения минимального остовного дерева.
ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Алгоритм Прима
Алгоритм начинается с выбора произвольной вершины. Она принимается за часть построенного минимального остовного дерева.
Далее в цикле в каждой итерации рассматриваются только те ребра исходного графа, одн
100 руб.
400 руб.
400 руб.
400 руб.
Презентация - Алгоритмы и структуры данных
alfFRED
: 24 ноября 2012
Содержание:
Основные алгоритмы и структуры данных.
Поиск.
Сортировка.
Списки.
Деревья.
Таблицы.
10 руб.
Лабораторная работа №4. По дисциплине Схемотехника. Тема - Активные фильтры на базе операционных усилителей. ЛЭТИ.
DiKey
: 8 апреля 2023
Лабораторная работа №4. По дисциплине Схемотехника. Тема - Активные фильтры на базе операционных усилителей.
Цель работы.
Ознакомиться с принципами работы операционных усилителей и активных фильтров, построенных на их основе. Исследовать схемы фильтров нижних частот Баттерворта и Бесселя, построенные на базе операционного усилителя LM741CN.
Задачи.
1) Построить компьютерные модели активных фильтров нижних частот Баттерворта 2 порядка и Бесселя 4 порядка в среде NI Multisim. Частоты среза филь
150 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.