Лабораторная №4 (вариант 9) "Теория сложностей вычислительных процессов и структур"

Цена:
49 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon INPUT.TXT
material.view.file_icon LAB4.EXE
material.view.file_icon lab4.pas
material.view.file_icon OUTPUT.TXT
material.view.file_icon Отчет.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры.
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.

Номер варианта выбирается по последней цифре пароля.........

Дополнительная информация

Работа включает в себя программу на Паскале, а также и полный отчет в Ворде.
Работа выполнена очень качественно. Попробуйте сдать хотя бы одну из моих
работ, и вы в этом убедитесь.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №9.
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Номер варианта выбирается по последней цифре пароля.
User zhekaersh : 5 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №9.
Теория сложностей вычислительных процессов и структур. Лабораторная работа № 4. Вариант №9
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифр
User nik200511 : 7 июля 2014
23 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа № 4. Вариант №9
Теория сложности вычислительных процессов и структур 9 вариант
Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта выбирается по последней цифре пароля
User Владислав161 : 5 октября 2023
300 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Лабораторная №4 (вариант 1) "Теория сложностей вычислительных процессов и структур"
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры. Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифр
User Greenberg : 1 августа 2011
49 руб.
Лабораторная №4 (вариант 3) "Теория сложностей вычислительных процессов и структур"
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры. Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифр
User Greenberg : 1 августа 2011
49 руб.
Лабораторная №4 (вариант 5) "Теория сложностей вычислительных процессов и структур"
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры. Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифр
User Greenberg : 1 августа 2011
49 руб.
Теория сложности вычислительных процессов и структур. Контрольная работа. Вариант №9
Задача о перемножении матриц. Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат. Номер варианта выбирается по последней цифре пароля. Вариант №9 М1[7x8], M2[8x4], M3[4x9], М4[9x2], M5[2x6], M6[6x3], M7[3x5], M8[5x5], М9[5х2]
User growlist : 18 мая 2017
40 руб.
promo
Билет № 25. Отмена крепостного права в России: предпосылки, подготовка, реализация. 2. Российская Федерация в конце 90-х гг. ХХ – начале ХХI вв.: противоречия социально-экономического и политического развития.
Билет № 25 1. Отмена крепостного права в России: предпосылки, подготовка, реализация. 2. Российская Федерация в конце 90-х гг. ХХ – начале ХХI вв.: противоречия социально-экономического и политического развития.
User rai9247 : 19 апреля 2019
100 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. Вариант 10
1. Вероятность выхода из строя каждого из 4-х блоков равна 0,8. Найти вероятность разрыва цепи. 2. Среди двенадцати спортсменов шестеро (группа А) выполняют упражнение с вероятностью 0,9, двое (группа В) – с вероятностью 0,7, остальные (группа С) – с вероятностью 0,5. Случайно выбранный спортсмен выполнил упражнение. Какова вероятность, что он из группы С? 3. В оперативную часть поступает в среднем одно сообщение в минуту. Найти вероятность того, что за 2 минуты поступит: а) 3 сообщения; б) мене
User Apotecary : 28 ноября 2016
59 руб.
Лабораторная работа № 2 «Программное обеспечение цифровых систем коммутации» Тема“Процесс поиска пути в двухзвенном коммутационном поле” В-10
1. Цель работы 1.1. Изучение принципов поиска пути в автоматических системах коммутации (АСК) с программным управлением. 1.2. Изучение состава данных, используемых программой поиска пути. 1.3. Изучение принципа организации поиска пути в 2-хзвеном КП. 1.3. Моделирование с помощью персональной ЭВМ процесса поиска пути в КП. 2. Подготовка к выполнению работы 2.1. Используя рекомендуемую литературу и настоящие методические указания, необходимо изучить: а) принципы организации поиска пути в автомати
User gudrich : 30 марта 2012
300 руб.
Спекательная тележка ТСГ-4 чертеж
Чертеж спекательной тележки. Сделано в компасе 16 и автокаде
User Laguz : 18 февраля 2024
500 руб.
Спекательная тележка ТСГ-4 чертеж
up Наверх