К решению нелинейных вариационных задач
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
ВВЕДЕНИЕ
Дипломная работа в целом посвящена методам решения экстремальных задач. Причем более подробно изложены те классы экстремальных задач, которые не изучаются ни в школьном курсе, ни в педвузовском курсе математики. Однако основная идея их решения лежит на основе построения математических моделей экономических задач и их решения.
В первой части дипломной работы рассмотрены простейшие задачи на отыскание наибольшего и наименьшего значения, которые решаются элементарным способом - на основе известных неравенств: среднее арифметическое не меньше среднего геометрического. В случае равенства сумма принимает минимальное значение, а произведение достигает максимального. Рассмотрены экстремальные значения квадратного трехчлена, а также решение экстремальных задач с применением производной.
Далее рассматриваются основные понятия о задачах математического программирования: транспортная задача линейного программирования;
задача о рационе; задача об оптимальном использовании сырья; рассмотрены задачи нелинейного программирования (случай нелинейной целевой функции; случай нелинейной целевой функции и нелинейной системы ограничений).
Во второй части приводятся основные понятия о краевых задачах, примеры аналитического решения краевых задач, приближенный метод решения. Приводится сходящийся алгоритм для линейных краевых задач. На основе этого алгоритма при помощи ЭВМ решены цикл различных краевых задач; численные результаты приведены в приложениях.
Третья часть посвящена'одномерным вариационным задачам и методам их решения.
Преимущество данной работы в методическом плане заключается в том, что вариационная задача, в частном случае, может быть сведена к обычной задаче на отыскание экстремума функции одной переменной, а поэтому позволяет ввести понятие вариационной задачи уже в школьном курсе в классах с углубленным изучением- математики, как новый класс экстремальных задач.
Далее в работе приводится вывод уравнений Эйлера-Лагранжа. На их основе рассмотрены примеры аналитического решения вариационной задачи. Получен алгоритм решения линейных вариационных задач на основе метода конечных разностей, которая не решается аналитическими приемами. На основе этого алгоритма на ЭВМ решены ряд задач, численные результаты приведены в приложениях.
Другой метод решения вариационных задач - метод Ритца вводится на простейших примерах, а затем обобщается. Так как оценка точности метода Ритца не является тривиальной задачей, то сравнительный анализ численных результатов весьма актуален.
Решение рассмотренных задач методом Ритца и другими приемами, сравнительный анализ результатов показывает хорошую достоверность этого метода уже в первом приближении.
В заключении приводится одна новая модификация метода Ритца, при помощи которой вариационная задача сводится к достаточно простой задаче отыскания экстремума функции одной переменной. При этом процедура нахождения корня нелинейного уравнения выполнима лишь приближенными методами. Сравнительный анализ численных результатов показывает надежность метода. Основная ценность этой модификации в решении существенно нелинейных задач.
Дипломная работа в целом посвящена методам решения экстремальных задач. Причем более подробно изложены те классы экстремальных задач, которые не изучаются ни в школьном курсе, ни в педвузовском курсе математики. Однако основная идея их решения лежит на основе построения математических моделей экономических задач и их решения.
В первой части дипломной работы рассмотрены простейшие задачи на отыскание наибольшего и наименьшего значения, которые решаются элементарным способом - на основе известных неравенств: среднее арифметическое не меньше среднего геометрического. В случае равенства сумма принимает минимальное значение, а произведение достигает максимального. Рассмотрены экстремальные значения квадратного трехчлена, а также решение экстремальных задач с применением производной.
Далее рассматриваются основные понятия о задачах математического программирования: транспортная задача линейного программирования;
задача о рационе; задача об оптимальном использовании сырья; рассмотрены задачи нелинейного программирования (случай нелинейной целевой функции; случай нелинейной целевой функции и нелинейной системы ограничений).
Во второй части приводятся основные понятия о краевых задачах, примеры аналитического решения краевых задач, приближенный метод решения. Приводится сходящийся алгоритм для линейных краевых задач. На основе этого алгоритма при помощи ЭВМ решены цикл различных краевых задач; численные результаты приведены в приложениях.
Третья часть посвящена'одномерным вариационным задачам и методам их решения.
Преимущество данной работы в методическом плане заключается в том, что вариационная задача, в частном случае, может быть сведена к обычной задаче на отыскание экстремума функции одной переменной, а поэтому позволяет ввести понятие вариационной задачи уже в школьном курсе в классах с углубленным изучением- математики, как новый класс экстремальных задач.
Далее в работе приводится вывод уравнений Эйлера-Лагранжа. На их основе рассмотрены примеры аналитического решения вариационной задачи. Получен алгоритм решения линейных вариационных задач на основе метода конечных разностей, которая не решается аналитическими приемами. На основе этого алгоритма на ЭВМ решены ряд задач, численные результаты приведены в приложениях.
Другой метод решения вариационных задач - метод Ритца вводится на простейших примерах, а затем обобщается. Так как оценка точности метода Ритца не является тривиальной задачей, то сравнительный анализ численных результатов весьма актуален.
Решение рассмотренных задач методом Ритца и другими приемами, сравнительный анализ результатов показывает хорошую достоверность этого метода уже в первом приближении.
В заключении приводится одна новая модификация метода Ритца, при помощи которой вариационная задача сводится к достаточно простой задаче отыскания экстремума функции одной переменной. При этом процедура нахождения корня нелинейного уравнения выполнима лишь приближенными методами. Сравнительный анализ численных результатов показывает надежность метода. Основная ценность этой модификации в решении существенно нелинейных задач.
Другие работы
Проблемы реализации и контроля финансовых планов
Lokard
: 29 октября 2013
Несомненно, что целью процесса финансового планирования как такового является достижение целей компании (оперативных — если осуществляется оперативное финансовое планирование или стратегических — если мы осуществляем стратегическое финансовое планирование).
Цели компании на конкретный момент могут быть различны — максимизация прибыли, увеличение объемов выпускаемой (реализуемой) продукции, продвижение новой товарной марки, обеспечение инвестиционной привлекательности предприятия, победа в конкур
10 руб.
Информатика и вычислительная техника
AlexBrookman
: 7 марта 2020
Формат .pdf
Дискретная математика для программистов. Р.Хаггарти
Издание 2−е, исправленное. Перевод с английского
под редакцией С.А. Кулешова
с дополнениями А.А. Ковалева,
В.А. Головешкина, М.В. Ульянова
Криптографические методы защиты информации. Учебное пособие. Б.Я. Рябко, А.Н. Фионов.
Программирование управляющих систем. Методичка
Языки программирования и методы трансляции. Э.А. Опалева, В.П. Самойленко
Формат .djvu
Fyodor_Novikov_-_Diskretnaya_matematika_2-e_izd
gordeev-av-molchanov
500 руб.
Гидравлика гидравлические машины и гидроприводы Задача 4 Вариант 6
Z24
: 17 ноября 2025
Закрытый резервуар заполнен дизельным топливом, температура которого 20 ºС. В вертикальной стенке резервуара имеется прямоугольное отверстие (D×b), закрытое полуцилиндрической крышкой. Она может повернуться вокруг горизонтальной оси A. Мановакуумметр MV показывает манометрическое давление рм или вакуум рв. Глубина топлива над крышкой равна Н. Определить усилие F, которое необходимо приложить к нижней части крышки, чтобы она не открывалась. Силой тяжести крышки пренебречь. На схеме показать векто
200 руб.
Ме163В. Немецкий реактивный самолет
wizardikoff
: 1 ноября 2012
Содержание
1. Вступление ................................................................................... 3
2. Первые шаги ................................................................................ 3
3. Создание Ме 163 ......................................................................... 5
4. Ме 163В «Der Komet» .................................................................. 7
5. Боевое крещение ........................................................................
10 руб.