Трехмерность бытия и теоремы Ферма и Пифагора
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Трехмерность бытия, Великая теорема Ферма и теорема Пифагора имеют логическую взаимосвязь. Эта взаимосвязь позволяет сформулировать еще один довод в пользу того, что существует только 3-мерный мир.
В литературе можно встретить многочисленные рассуждения о многомерных мирах, в том числе упоминания пространства-времени Минковского – Эйнштейна. При этом зачастую уточняют, что именно время является четвертым измерением. Но измерение ли оно? Является ли время одним из измерений четырехмерного мира: x, y, z, t? В соотношениях специальной теории относительности время входит в уравнение:
ds2 = cdt2 – dx2 – dy2 – dz2
Не слишком ли сложно оно соотносится с тремя другими? Как видим, время присутствует в уравнении в своем, отличном от пространственных координат виде. Время не обладает характеристиками x, y, z. Это нечто иное, совершенно особенное.
Рассмотрим последовательно первые варианты мерности мира от нулевого до четвертого. Предположим, что существует ноль-мерный мир. Это мир, в котором нет ни одного измерения. Очевидно, мир этот представляет собой точку. Разумеется, все его объекты являются точками с такими же нулевыми измерениями. Теперь добавим первое измерение – x. Это измерение возникает при движении точки: образуется линия. То есть 1-мерный мир является линейным миром. Все объекты этого мира либо точки, либо отрезки линии. Если “сдвинуть” линию по новой координате – y, мы получим 2-мерный мир. Этот мир всем нам хорошо знаком, с ним нам приходится иметь дело на чертежах, рисунках, в книгах, газетах, на экранах мониторов, телевизоров. Перейти от этого мира к нашему бытию можно, сдвинув плоскость по новой координате – z. Как видим, переход от одного мира к другому, большей мерности осуществляется простым смещением этого мира по дополнительной, вновь введенной координате. Следовательно, следует ожидать, что переход к миру следующей, четверной мерности можно также осуществить смещением нашего объемного, пространственного мира по какой-то новой координате. Очевидно, на эту роль время вполне может подойти. Однако у времени уже есть своя, отличная от пространства единица измерения. Это уже отклонение от принятой методики. Поэтому попробуем найти если не новую пространственную координату, то, по крайней мере, не худшую, чем время.
В литературе можно встретить многочисленные рассуждения о многомерных мирах, в том числе упоминания пространства-времени Минковского – Эйнштейна. При этом зачастую уточняют, что именно время является четвертым измерением. Но измерение ли оно? Является ли время одним из измерений четырехмерного мира: x, y, z, t? В соотношениях специальной теории относительности время входит в уравнение:
ds2 = cdt2 – dx2 – dy2 – dz2
Не слишком ли сложно оно соотносится с тремя другими? Как видим, время присутствует в уравнении в своем, отличном от пространственных координат виде. Время не обладает характеристиками x, y, z. Это нечто иное, совершенно особенное.
Рассмотрим последовательно первые варианты мерности мира от нулевого до четвертого. Предположим, что существует ноль-мерный мир. Это мир, в котором нет ни одного измерения. Очевидно, мир этот представляет собой точку. Разумеется, все его объекты являются точками с такими же нулевыми измерениями. Теперь добавим первое измерение – x. Это измерение возникает при движении точки: образуется линия. То есть 1-мерный мир является линейным миром. Все объекты этого мира либо точки, либо отрезки линии. Если “сдвинуть” линию по новой координате – y, мы получим 2-мерный мир. Этот мир всем нам хорошо знаком, с ним нам приходится иметь дело на чертежах, рисунках, в книгах, газетах, на экранах мониторов, телевизоров. Перейти от этого мира к нашему бытию можно, сдвинув плоскость по новой координате – z. Как видим, переход от одного мира к другому, большей мерности осуществляется простым смещением этого мира по дополнительной, вновь введенной координате. Следовательно, следует ожидать, что переход к миру следующей, четверной мерности можно также осуществить смещением нашего объемного, пространственного мира по какой-то новой координате. Очевидно, на эту роль время вполне может подойти. Однако у времени уже есть своя, отличная от пространства единица измерения. Это уже отклонение от принятой методики. Поэтому попробуем найти если не новую пространственную координату, то, по крайней мере, не худшую, чем время.
Другие работы
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №17
DreaMaster
: 10 марта 2014
1. Непрерывная двумерная случайная величина и её распределение.
2. Случайная точка (X,Y) имеет равномерное распределение в области {0<x<2, 1<y<1}. Найти коэффициент корреляции .
3. Из колоды в 36 карт извлекают четыре карты. Какова вероятность, что все они одной масти?
4. Случайная величина Х распределена по нормальному закону с mx=40 и Dx=200. Найти вероятность попадания случайной величины в интервал (30;80).
5.В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу
35 руб.
Втулка резьбовая
grom555
: 25 августа 2019
1 чертёж,формат А4, Сборочный чертеж выполнен в компасе 16ой версии на формате А4. На листе изображён разрез втулки резьбовой,проставлены основные размеры, основная надпись не заполнена, файл имеет расширение cdw. , упакован в rar. чертёж выполнен в соответствии с ЕСКД. Может быть использован для Курсовых и Дипломных проектов по машиностроительным дисциплинам
30 руб.
Расчет параметров воздушной среды производственного помещения при избытках тепла
evelin
: 9 марта 2015
Определение количества избыточного тепла, выделяемого в объем производственного помещения
Определение часового количества воздуха, необходимого для удаления избыточного тепла
Определение кратности воздухообмена в производственном помещении
35 руб.
Аллергические симптомы, синдромы и меры оказания неотложной помощи
evelin
: 23 января 2013
План
1. Аллергические реакции
2. Анафилакический шок
3. Приступ бронхиальной астмы
4. Астматическое состояние
5. Отек Квинке
6. Крапивница
7. Лекарственная аллергия
8. Сывороточная болезнь
9. Алерготоксикодермия
10. Гемолитические реакции
11. Поллиноз
Литература
1. АЛЛЕРГИЧЕСКИЕ РЕАКЦИИ
Под аллергическими реакциями в клинической практике понимают проявления, в основе возникновения которых л