Линейные уравнения и неравенства
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.
Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.
Решить уравнение — значит найти все его корни или доказать, что корней нет.
Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.
При решении уравнений используются следующие свойства:
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.
Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.
Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.
Решить уравнение — значит найти все его корни или доказать, что корней нет.
Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.
При решении уравнений используются следующие свойства:
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.
Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.
Другие работы
Моделювання оптимального розподілу інвестицій за допомогою динамічного програмування
DocentMark
: 12 ноября 2012
ЗМІСТ
Вступ
1. Теоретичні аспекти математичного моделювання динамічних систем
1.1 Основні поняття теорії моделювання
1.2 Принципи моделювання динамічних систем
1.3 Моделі і методи прийняття управлінських рішень з урахуванням фактору часу
1.4 Моделі динамічного програмування
2. Теоретичні аспекти динамічного програмування
2.1 Постановка задачі динамічного програмування. Основні умови й область застосування
2.2 Складання математичної моделі динамічного програмування
2.3 Етапи рішення задачі динамі
Калибр-скоба регулируемая на размер 35h7
Laguz
: 26 июля 2017
Чертеж калибра скобы регулируемой на размер 35h7.
Чертеж в компасе, есть сборка и спецификация.
60 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 9 Вариант 37
Z24
: 20 декабря 2025
Пар — фреон — 12 при температуре t1 поступает в компрессор, где адиабатно сжимается до давления, при котором его температура становится равной t2, а степень сухости пара x2=1. Из компрессора фреон поступает в конденсатор, где при постоянном давлении обращается в жидкость при температуре кипения, после чего адиабатно расширяется в дросселе до температуры t4=t1. Холодопроизводительность установки Q.
Определить:
— холодильный коэффициент установки;
— массовый расход фреона;
— теоретичес
180 руб.
Пересечение пирамиды и призмы. Чертеж. Вариант 8
Laguz
: 25 февраля 2025
Задание ИКГ 13. Пересечение пирамиды и призмы
Вариант 8
Задание подходит для всех универов использующих методичку Вольхина.
Чертеж конуса с призматическим отверстием и модель сделаны в компас 21 и сохранен дополнительно формат джпг.
Файлы компаса можно просматривать и сохранять в нужный формат бесплатной программой КОМПАС-3D Viewer.
Если есть какие-то вопросы или нужно другой вариант, пишите.
180 руб.