Построение математических моделей при решении задач оптимизации
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
План Введение Математические модели и их свойства. Практические задачи, приводящие к исследованию линейной функции. Использование свойств квадратичной функции при решении экстремальных задач. Применение методов дифференциального исчисления при решении прикладных задач. Заключение. Список литературы. Введение
Большую часть своих усилий человек тратит на поиск наилучшего т.е. оптимального решения поставленной задачи. Как, располагая определенными ресурсами, добиваться наиболее высокого жизненного уровня, наивысшей производительности труда, наименьших потерь, максимальной прибыли, минимальной затраты времени – так ставятся вопросы, над которыми приходится думать каждому члену общества.
Математикам удалось разработать методы решения задач на наибольшее и наименьшее значение, или, как их еще называют, задач на оптимизацию ( от латинского “оптимум” – наилучший). Многие задачи, поиска оптимальных решений, могут быть решены только с использованием методов дифференциального исчисления. Ряд задач такого типа решается с помощью специальных методов линейного программирования, но существуют и такие экстремальные задачи, которые решаются средствами элементарной математики.
Следует различать также два вида задач на оптимизацию. В задачах первого вида улучшение достигается за счет коренных качественных изменений: выбор новых конструктивных решений, переход на новую технологию изготовления. В задачах второго рода качественная сторона дела остается неизменной, но меняются количественные показатели. В данной работе рассмотрены задачи только второго типа. В таких задачах ищутся наибольшее и наименьшее значения функций, зависящих от одной или нескольких переменных.
Большую часть своих усилий человек тратит на поиск наилучшего т.е. оптимального решения поставленной задачи. Как, располагая определенными ресурсами, добиваться наиболее высокого жизненного уровня, наивысшей производительности труда, наименьших потерь, максимальной прибыли, минимальной затраты времени – так ставятся вопросы, над которыми приходится думать каждому члену общества.
Математикам удалось разработать методы решения задач на наибольшее и наименьшее значение, или, как их еще называют, задач на оптимизацию ( от латинского “оптимум” – наилучший). Многие задачи, поиска оптимальных решений, могут быть решены только с использованием методов дифференциального исчисления. Ряд задач такого типа решается с помощью специальных методов линейного программирования, но существуют и такие экстремальные задачи, которые решаются средствами элементарной математики.
Следует различать также два вида задач на оптимизацию. В задачах первого вида улучшение достигается за счет коренных качественных изменений: выбор новых конструктивных решений, переход на новую технологию изготовления. В задачах второго рода качественная сторона дела остается неизменной, но меняются количественные показатели. В данной работе рассмотрены задачи только второго типа. В таких задачах ищутся наибольшее и наименьшее значения функций, зависящих от одной или нескольких переменных.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.