Трионы: три тела в двух измерениях
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Бурное развитие гетероструктур в последние десятилетия привело к тому, что удалось обнаружить или создать большое количество физических объектов и явлений, которые ранее либо не изучались, либо рассматривались чисто теоретически, в виде экзотики, вряд ли осуществимой на практике. Действительно, возможность встраивать в проводник потенциал практически любого профиля, причем с масштабом, характерным для проявления квантоворазмерных явлений, позволила создавать на практике искусственные объекты с заранее заданными свойствами. Так, например, квантовая точка представляет собой, фактически, искусственный атом с системой уровней, которая задаётся размерами, формой квантовой точки и полупроводником, на основе которого она реализована. Заметим, что все эти параметры поддаются контролю со стороны экспериментатора, тем самым, именно он определяет, какой объект будет создан.
Для того чтобы получить квантоворазмерную структуру в полупроводнике, необходимо создать ограничения на движение носителей заряда на масштабе длин, сравнимых с их де-бройлевскими длинами волн. Принципиальными здесь являются структуры, в которых движение носителей полностью ограничено только в одном (квантовые ямы), двух (квантовые нити) или во всех трех (квантовые точки) направлениях. Создание таких структур означает реализацию на практике объектов с размерностью меньшей, чем в обычном полупроводнике ([*1]). Один из многочисленных эффектов, связанных с понижением размерности, это увеличение характерной энергии связи практически любых низкоразмерных систем по сравнению с их трехмерными аналогами. Это связано с тем, что частицы, из которых состоит система, имеют меньше степеней свободы в такой структуре, чем в трехмерном полупроводнике, из-за того, что их движение ограничено в одном или нескольких направлениях. Это уменьшает их характерную энергию локализаций, которая возникает при образовании систёмы. С другой стороны, связывающий потенциал системы, при наличии ограничения, как правило, возрастает, так как, из-за концентрации волновой функции в области квантоворазмерной структуры, усиливается кулоновское взаимодействие, и возрастает роль обменного взаимодействия (сильнее перекрываются волновые функции одинаковых частиц). В результате рост энергии связи практически любых систем, даже при небольшом понижении их размерности, может быть значительным. Например, энергия связи основного состояния двумерного экситона (связанные электрон и дырка) в 4 раза выше, чем у соответствующего ему трехмерного аналога. Интерес вызывает также то, что при понижении размерности происходят не только количественные, но и качественные изменения в квантовомеханических системах.
Для того чтобы получить квантоворазмерную структуру в полупроводнике, необходимо создать ограничения на движение носителей заряда на масштабе длин, сравнимых с их де-бройлевскими длинами волн. Принципиальными здесь являются структуры, в которых движение носителей полностью ограничено только в одном (квантовые ямы), двух (квантовые нити) или во всех трех (квантовые точки) направлениях. Создание таких структур означает реализацию на практике объектов с размерностью меньшей, чем в обычном полупроводнике ([*1]). Один из многочисленных эффектов, связанных с понижением размерности, это увеличение характерной энергии связи практически любых низкоразмерных систем по сравнению с их трехмерными аналогами. Это связано с тем, что частицы, из которых состоит система, имеют меньше степеней свободы в такой структуре, чем в трехмерном полупроводнике, из-за того, что их движение ограничено в одном или нескольких направлениях. Это уменьшает их характерную энергию локализаций, которая возникает при образовании систёмы. С другой стороны, связывающий потенциал системы, при наличии ограничения, как правило, возрастает, так как, из-за концентрации волновой функции в области квантоворазмерной структуры, усиливается кулоновское взаимодействие, и возрастает роль обменного взаимодействия (сильнее перекрываются волновые функции одинаковых частиц). В результате рост энергии связи практически любых систем, даже при небольшом понижении их размерности, может быть значительным. Например, энергия связи основного состояния двумерного экситона (связанные электрон и дырка) в 4 раза выше, чем у соответствующего ему трехмерного аналога. Интерес вызывает также то, что при понижении размерности происходят не только количественные, но и качественные изменения в квантовомеханических системах.
Другие работы
Экзаменационная работа по дисциплине: Программное обеспечение инфокоммуникационных технологий. Билет №19
Roma967
: 9 февраля 2020
Билет №19
1. Концепция iptables. Примеры цепочки правил
2. Понятие “сети” с точки зрения системы Unix
3. Отправить широковещательные ARP запросы на хост 172.24.0.7. Осуществить перехват данных пакетов с просмотром содержимого
600 руб.
Гидравлика УГЛТУ Задача 10 Вариант 0
Z24
: 8 декабря 2025
В объемном гидроприводе вращательного движения заданы параметры гидромотора: рабочий объем гидромотора qм, механический КПД ηмех.м = 0,96, коэффициент утечек гидромотора σм, частота вращения вала nм и крутящий момент Мкр.
Потери давления:
— в гидрораспределителе Δрр = 0,16 МПа;
— в фильтре Δрф = 0,14 МПа;
— в гидролиниях Δрл.
КПД насоса ηн = 0,8.
Определить: давление нагнетания рн и подачу насоса Qн, перепад давления на гидромоторе Δрм и КПД гидропривода η.
150 руб.
Экзамен по английскому языку. 2-й семестр. Билет №11
Nikolaevna
: 25 марта 2014
Задание: перевести текст на русский язык.
Optical transmission with high dynamic range
Hungary - Budapest-based LaserBit Communications Corp, an Anglo-American-Hungarian joint-venture, has received a US$6million capital injection from Intel Capital, Sandier Capital and 3TS (a regional fund of3i, Technologieholding and SITRA) for continued design, development and manufacture of high-speed wireless optical data-transmission systems.
100 руб.
Математика. Экзамен. Билет №1.
nik200511
: 26 февраля 2020
Билет № 1
1. Вычислить интеграл с точностью 0,001, раскладывая подынтегральную функцию в степенной ряд
2. Разложить функцию в ряд Фурье на данном отрезке (период Т)
3. Вычислить
а) ; б)
4. Вычислить интеграл по замкнутому контуру с помощью вычетов
;
Тест
Найти радиус сходимости ряда .
3 е 0 1
Найти радиус сходимости ряда .
1 3 0
Найти радиус сходимости ряда .
1
0
375 руб.