Дискретная математика
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Часть 3. Элементы алгебры логики............................................................ 3
3.1 Введение в алгебру логики....................................................................... 3
3.2 Основные функции алгебры логики......................................................... 5
3.3 Формулы алгебры логики........................................................................ 9
Контрольные вопросы.................................................................................. 12
3.4 Законы алгебры логики и следствия из них........................................... 12
Контрольные вопросы.................................................................................. 16
3.5 Логические функции многих переменных.............................................. 16
3.6 Построение формул алгебры логики по заданной таблице истинности 18
Контрольные вопросы и упражнения.......................................................... 26
3.7 Некоторые замкнутые классы (классы Поста). Понятие базиса............ 26
Контрольные вопросы и упражнения.......................................................... 34
3.8 Методы минимизации логических функций........................................... 34
Контрольные вопросы.................................................................................. 39
3.9 Неполностью определенные логические функции................................. 40
3.10 Формы представления булевых функций............................................ 41
3.10.1 Семантические деревья...................................................................... 42
3.10.2 Бинарные диаграммы решений (БДР)............................................... 45
3.11 Построение логических схем................................................................ 45
Контрольные вопросы.................................................................................. 45
3.12 Логические конечные автоматы............................................................ 46
3.12.1 Процессы............................................................................................ 50
3.12.2 Конечные автоматы............................................................................ 52
Контрольные вопросы.................................................................................. 55
БИБЛИОГРАФИЧЕСКИЙ СПИСОК........................................................... 60
Часть 3. Элементы алгебры логики
3.1 Введение в алгебру логики
Алгебру логики иначе еще называют алгеброй высказываний, логикой высказываний. Алгебра логики начала формироваться в 19 веке в трудах английского математика Дж. Буля.
Прежде всего, благодаря труду английского логика Джорджа Буля «Математический анализ логики», был достигнут подлинный прогресс науки, называемый математической логикой. Он перенёс на логику законы и правила математических действий, ввёл логические операции, предложил способ записи высказываний в символической форме.
В трудах Джорджа Буля и О. де Моргана математическая логика представлена как своеобразная алгебра – алгебра логики (алгебра высказываний).
Алгебра логики (алгебра высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.
Джордж Буль (1815–1864) родился в Линкольне (Англия). Сын сапожного мастера. Окончил только начальную школу и дальнейшие знания приобретал самоучкой. С 1849 г. Буль – профессор математики в Куинс – колледже в Корке (Ирландия), где преподавал до конца жизни. Буля почти в равной степени интересовали логика, математический анализ, теория вероятностей, этика Б. Спинозы, философские работы Аристотеля и Цицерона. Он считается несомненным создателем современной символической (математической) логики.
3.1 Введение в алгебру логики....................................................................... 3
3.2 Основные функции алгебры логики......................................................... 5
3.3 Формулы алгебры логики........................................................................ 9
Контрольные вопросы.................................................................................. 12
3.4 Законы алгебры логики и следствия из них........................................... 12
Контрольные вопросы.................................................................................. 16
3.5 Логические функции многих переменных.............................................. 16
3.6 Построение формул алгебры логики по заданной таблице истинности 18
Контрольные вопросы и упражнения.......................................................... 26
3.7 Некоторые замкнутые классы (классы Поста). Понятие базиса............ 26
Контрольные вопросы и упражнения.......................................................... 34
3.8 Методы минимизации логических функций........................................... 34
Контрольные вопросы.................................................................................. 39
3.9 Неполностью определенные логические функции................................. 40
3.10 Формы представления булевых функций............................................ 41
3.10.1 Семантические деревья...................................................................... 42
3.10.2 Бинарные диаграммы решений (БДР)............................................... 45
3.11 Построение логических схем................................................................ 45
Контрольные вопросы.................................................................................. 45
3.12 Логические конечные автоматы............................................................ 46
3.12.1 Процессы............................................................................................ 50
3.12.2 Конечные автоматы............................................................................ 52
Контрольные вопросы.................................................................................. 55
БИБЛИОГРАФИЧЕСКИЙ СПИСОК........................................................... 60
Часть 3. Элементы алгебры логики
3.1 Введение в алгебру логики
Алгебру логики иначе еще называют алгеброй высказываний, логикой высказываний. Алгебра логики начала формироваться в 19 веке в трудах английского математика Дж. Буля.
Прежде всего, благодаря труду английского логика Джорджа Буля «Математический анализ логики», был достигнут подлинный прогресс науки, называемый математической логикой. Он перенёс на логику законы и правила математических действий, ввёл логические операции, предложил способ записи высказываний в символической форме.
В трудах Джорджа Буля и О. де Моргана математическая логика представлена как своеобразная алгебра – алгебра логики (алгебра высказываний).
Алгебра логики (алгебра высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.
Джордж Буль (1815–1864) родился в Линкольне (Англия). Сын сапожного мастера. Окончил только начальную школу и дальнейшие знания приобретал самоучкой. С 1849 г. Буль – профессор математики в Куинс – колледже в Корке (Ирландия), где преподавал до конца жизни. Буля почти в равной степени интересовали логика, математический анализ, теория вероятностей, этика Б. Спинозы, философские работы Аристотеля и Цицерона. Он считается несомненным создателем современной символической (математической) логики.
Похожие материалы
Дискретная математика
Kir2791
: 18 сентября 2023
Вариант: No3
Задача I
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={1,2,3,4,5},
A={1, 3, 5}; B={2, 4}, C={2,3,4}, D={5}.
(U \ A)∪ D;
(A ̅∩D ̅ ) ̅;
((A\C)\D)∪B;
(A∩C)∪B;
(C ̅∩B) ̅.
Задача II
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
”Если на небе светит солнце, и не идёт дождь, то погода подходит для пикника”.
Задача
50 руб.
Дискретная математика
Kir2791
: 18 сентября 2023
вариант 2
1 Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Дано:
; ; ; .
Найти:
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
3. Для булевой функции найти методом преобразования минималь
30 руб.
300 руб.
Дискретная математика
ezhva
: 2 августа 2021
Дискретная математика
...
11. Если на множестве всех треугольников на плоскости рассматривается отношение подобия, то данное отношение является отношением ...
...
17. Если из высказывания S1 следует S2 и, наоборот, из S2 следует S1, то высказывания S1 и S2 ... эквивалентными
...
22. Дистрибутивные законы булевой алгебры действительных чисел ...
...
27. Если А - множество всех книг во всех библиотеках России, а В - множество всех книг в библиотеке МГУ по различным отделам науки и искусства, тогда
180 руб.
Дискретная математика
Алексей115
: 14 августа 2020
Оценка - Зачёт
Вариант 16
1) Перестановки с повторениями – дать определение, привести формулу для расчета числа вариантов. В чем отличие от перестановок без повторений? Привести примеры.
2) Понятие связности, компонент связности, сильной и слабой связности орграфа. Построение фактор-графа. Привести пример.
3) Выяснить, является ли функция f(x) = x3+6, у которой область определения и область значений совпадает с действительной числовой осью, инъективной, сюръективной, имеет ли она обратную функ
200 руб.
Дискретная математика
Алексей115
: 12 августа 2020
Вариант 23
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\B = AD (AÇ B) б) (AÈ C) ́ B = (C ́ B) È ((AÇ C) ́ B) È (A ́ B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помо
130 руб.
Дискретная математика
lyolya
: 29 марта 2020
1. Задано универсальное множество U={10,11,12,13,14} и множества A={10,11,12};B={12,13,14};C={10,14};D={12}. Найти результаты действий a) ; б) ; в) ; г) ; д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице ис
70 руб.
Дискретная математика
Sakhal
: 1 апреля 2019
I. Задано универсальное множество U и множества A, B, C и D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По ми
200 руб.
Другие работы
Фильтр отстойник 30.000
vermux1
: 29 сентября 2021
Фильтр отстойник 30.000 сборочный чертеж
Фильтр отстойник 30.000 спецификация
Фильтр отстойник 30.000 3d модель
Прокладка 30.001
Фильтрующий элемент 30.002
Шайба 30.003
Болт стяжной 30.004
Крышка 30.005
Прокладка 30.006
Корпус 30.008
Игла запорная 30.009
Фильтр предназначен для тонкой очистки смазочного материала. Последний через впускное отверстие A и стяжной болт 4 поступает в отстойник, где крупные частицы механических примесей выпадают. Пройдя через фильтрующий элемент, смазочный материал п
170 руб.
Физика. 1-й вариант
anderwerty
: 22 октября 2014
Вариант 1
1. Каков показатель преломления среды, если излучение с частотой колебаний 5,6-1014 ГЦ образует в ней волны длинной 420 нм?
11. Свет падает на границу двух сред под углом 600. Угол между отраженным и преломленным лучом составляет 700. Каков относительный показатель преломления этих двух сред?
21. Излучение, имеющее частоту колебаний 7,2-1014ГЦ, переходит из воды в кварц. На сколько при этом изменяется его скорость и длина волны?
31. Вогнутая линза с оптической силой 5,0
200 руб.
Теоретическая механика СамГУПС Самара 2020 Задача К1 Рисунок 1 Вариант 4
Z24
: 8 ноября 2025
Кинематика плоских механизмов
Плоский кривошипно-шатунный механизм связан с системой зубчатых колес, насаженных на неподвижные оси, которые приводятся в движение ведущим звеном (зубчатая рейка – схема К1.0; рукоятка – схема К1.1; груз на нити – схема К1.2 и т. д.). Рукоятка О1А и кривошип О2С жестко связаны с соответствующими колесами. Длина кривошипа О2С = L1, шатуна CD = L2.
Схемы механизмов приведены на рис. К1.0 – К1.9, а размеры и уравнения движения точки А ведущего звена S = f (t) –
600 руб.
Адміністративні та економічні методи управління
Aronitue9
: 9 сентября 2012
ПНУ ім.В.Стефаника, м.Івано-Франківськ, Ославський М.І., 34с., 2010р.
Зміст
Вступ..........................................................................................3
Розділ 1. Загальна характеристика методів державного управління.............5
Розділ 2. Адміністративні методи державного управління.........................7
2.1. Поняття і ознаки адміністративних методів управління.......................7
2.2. Організаційно-розпорядчі адміністративні методи............................10
2.
20 руб.