О структуре поля упругих колебаний при сейсмоизмерениях
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Изучение поля упругих колебаний в твердых средах с самого начала пошло не по законам методологии. А именно, все фундаментальные положения этой области знаний возникли не в результате экспериментальных наблюдений, как это принято в физике, а на основании математического обеспечения чисто мысленной модели.
В 1828 году Пуассон объявил о наличии двух типов упругих колебаний - продольных и поперечных. Это было провозглашено в результате решения волнового уравнения при умозрительно заданных граничных условиях. В дальнейшем, так же умозрительно задавая другие граничные условия, математики получали решения волнового уравнения для множества других типов волн. В результате, сформировалось мнение, что при проведении сейсморазведочных работ возникает и распространяется большое количество типов упругих колебаний.
Не имея технических средств для выявления отдельных типов волн по их базисным параметрам1, с самого начала эры измерений упругие волны различных типов стали различать по скорости их распространения. Так, например, принимая, что продольные волны всегда имеют место, и что скорость их, по определению, наибольшая, первую по времени пачку на сейсмограмме считают именно обусловленной этими самыми продольными волнами. Ну, а вторая пачка - волны поперечные, третья - волны Рэлея и т.д.
Диапазон значений получающихся по этой логике скоростей оказался очень широким- от 100м/с до 7000м/с. И здесь нашлось место для множества типов волн. Однако в этой логике есть одна неувязка. Дело в том, что инициатор упругих колебаний при сейсмоработах - ударного типа. Удар или взрыв. То есть, короткий импульс. А форма сейсмосигнала имеет вид гармонических затухающих колебаний.
Из общефизических представлений известно, что если отклик на ударное, импульсное воздействие представляет собой гармонический затухающий процесс, то это значит, что воздействию подверглась какая-то колебательная система. Это важнейший в физике принцип. Так, например, исходя из этой логики, в XIX веке был открыт L-C колебательный контур.
Таким образом, первое, что необходимо было сделать, обнаружив, что отклик на удар имеет вид затухающего гармонического процесса, это найти ту колебательную систему, которая осуществляет преобразование импульса в гармонический сигнал. Нам это удалось сделать, и, как оказалось, оно осуществляется не одной колебательной системой, а несколькими.
В 1828 году Пуассон объявил о наличии двух типов упругих колебаний - продольных и поперечных. Это было провозглашено в результате решения волнового уравнения при умозрительно заданных граничных условиях. В дальнейшем, так же умозрительно задавая другие граничные условия, математики получали решения волнового уравнения для множества других типов волн. В результате, сформировалось мнение, что при проведении сейсморазведочных работ возникает и распространяется большое количество типов упругих колебаний.
Не имея технических средств для выявления отдельных типов волн по их базисным параметрам1, с самого начала эры измерений упругие волны различных типов стали различать по скорости их распространения. Так, например, принимая, что продольные волны всегда имеют место, и что скорость их, по определению, наибольшая, первую по времени пачку на сейсмограмме считают именно обусловленной этими самыми продольными волнами. Ну, а вторая пачка - волны поперечные, третья - волны Рэлея и т.д.
Диапазон значений получающихся по этой логике скоростей оказался очень широким- от 100м/с до 7000м/с. И здесь нашлось место для множества типов волн. Однако в этой логике есть одна неувязка. Дело в том, что инициатор упругих колебаний при сейсмоработах - ударного типа. Удар или взрыв. То есть, короткий импульс. А форма сейсмосигнала имеет вид гармонических затухающих колебаний.
Из общефизических представлений известно, что если отклик на ударное, импульсное воздействие представляет собой гармонический затухающий процесс, то это значит, что воздействию подверглась какая-то колебательная система. Это важнейший в физике принцип. Так, например, исходя из этой логики, в XIX веке был открыт L-C колебательный контур.
Таким образом, первое, что необходимо было сделать, обнаружив, что отклик на удар имеет вид затухающего гармонического процесса, это найти ту колебательную систему, которая осуществляет преобразование импульса в гармонический сигнал. Нам это удалось сделать, и, как оказалось, оно осуществляется не одной колебательной системой, а несколькими.
Другие работы
Информационный менеджмент. Контрольная работа
Lugavka
: 23 октября 2015
Задание к работе- разработать стратегию внедрения ИТ/ИС на предприятии. В качестве предприятия можно выбрать типичного представителя какой-либо отрасли или сегмента рынка.
120 руб.
Рулевое управление автомобиля массой 18 тонн.
Tanya123
: 13 марта 2012
Техническая характеристика :
1. Полная масса 18т.
2. Колесная формула 6x6
3. Трансмиссия - гидростатическая:
рабочий двигатель — Vpaб = 935...2855см3/об
п = 250 об/мин
передаточное число U = 6
4. Формула управления - с переменнім полюсом РУ
-Рулевой механизм - гидроцилиндр :
- Рабочее давление 160бар., максимальное - 200бар.
Скорость перемещения штока не более 0.5м/с
Ход штока 249мм
5. Шина - 1770 х 610-635(26,5-25)
6. Минимальный радиус поворота (теоретический) Rt = 16,5м
8 чертежей.
Экзамен по дисциплине:Информатика. Билет № 6. 2-й семестр
ramzes14
: 17 апреля 2012
Билет 6
1. Стандартные программы Windows: назначение, описание, примеры использования.
2. Составьте программу для вычисления количества положительных элементов каждого столбца матрицы.
Ответы:
1. Стандартные программы Windows: назначение, описание, примеры использования.
1. Диспетчер задач
Диспетчер задач служит для отображения основных показателей быстродействия компьютера. В нем отображаются сведения о программах и процессах, выполняемых на компьютере. Для выполняемых программ можно просмотр
50 руб.
Математика часть №2. Контрольная работа. Вариант №7.
Bvz
: 17 июля 2020
Дистанционное обучение
Направление «Информатика и вычислительная техника»
Профиль «Программное обеспечение средств вычислительной техники и автоматизированных систем»
Дисциплина «Математика» Часть 2.
Вариант № 7
1. . Найти неопределенные интегралы
2. Вычислить несобственный интеграл или доказать его расходимость
3. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
4. Вычислить криволинейный интеграл по координатам
где - дуга синусоиды от точки
50 руб.