Применение тригонометрической подстановки для решения алгебраических задач
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Содержание
Введение........................................................................................................... 3
Глава 1. Метод замены переменной при решении задач.............................. 7
§1. Общие положения.................................................................................. 7
§2. Тригонометрическая подстановка........................................................ 9
Глава 2. Применение метода тригонометрической подстановки при решении задач 11
§1. Решение уравнений............................................................................. 11
1.1 Иррациональные уравнения........................................................... 11
1.2 Рациональные уравнения................................................................ 23
1.3 Показательные уравнения............................................................... 26
§2. Решение систем.................................................................................... 27
§3. Доказательство неравенств................................................................. 32
§4. Задачи на нахождение наибольшего и наименьшего значений
функции...................................................................................................... 35
§5. Решение задач с параметрами............................................................ 43
Глава 3. Опытное преподавание темы «Применение тригонометрической подстановки для решения алгебраических задач» на факультативных занятиях по математике 48
Заключение.................................................................................................... 63
Литература.................................................................................................... 65
Приложение................................................................................................... 70
Введение
Решение задач является важнейшим видом учебной деятельности, в процессе которой учащимися усваивается математическая теория и развиваются логическое мышление и творческие способности. Развитие творческих способностей учащихся старших классов при обучении математике осуществляется более эффективно при вовлечении их в творческую деятельность, которая включает в себя:
1. Осознание, что данная конкретная задача есть представитель класса однородных задач.
2. Отыскание различных вариантов решения, их сопоставление, выявление сильных и слабых сторон каждого способа решения с целью выбора из них наиболее рационального, простого, «изящного». Сравнение и анализ различных решений одной задачи делает знания более прочными и осознанными. Установлено, что решение одной и той же задачи несколькими способами приносит больше пользы, чем решение подряд такого же числа стереотипных заданий.
3. Самостоятельное комбинирование известных способов деятельности.
4. Изобретение, по крайней мере, для данной задачи принципиально нового приема решения.
Для развития творческих способностей учащихся наиболее ценными являются сложные и нестандартные задачи. Решение сложных задач по математике во многом зависит от опыта их решения, от степени овладения методами их решения и техникой преобразований. Нестандартные задачи – это задачи, для решения которых у учащихся нет готового алгоритма и нужен самостоятельный поиск ключевой идеи. При решении нестандартных задач формируется математическая культура, воспитывается гибкость ума и осуществляется постижение единства математики. Вот почему, по мнению Д. Пойа, «нестандартные задачи могут способствовать интеллектуальному развитию ученика, чего нельзя сказать о стандартных» [36].
Важнейшим источником нестандартных задач являются олимпиадные и конкурсные задания. Как правило, нестандартные задачи требуют нестандартного подхода к их решению. Важно, чтобы у учащихся был создан запас методов решения нестандартных задач, так как не всегда школьники могут самостоятельно додуматься до нестандартного метода решения.
С точки зрения стандартных школьных методов решения алгебраических задач метод тригонометрической подстановки является нестандартным приемом. С другой стороны, тригонометрическая подстановка позволяет решать сложные многоходовые задачи. Она применяется при решении таких алгебраических задач, которые своими средствами не решаются или решаются очень сложно.
Введение........................................................................................................... 3
Глава 1. Метод замены переменной при решении задач.............................. 7
§1. Общие положения.................................................................................. 7
§2. Тригонометрическая подстановка........................................................ 9
Глава 2. Применение метода тригонометрической подстановки при решении задач 11
§1. Решение уравнений............................................................................. 11
1.1 Иррациональные уравнения........................................................... 11
1.2 Рациональные уравнения................................................................ 23
1.3 Показательные уравнения............................................................... 26
§2. Решение систем.................................................................................... 27
§3. Доказательство неравенств................................................................. 32
§4. Задачи на нахождение наибольшего и наименьшего значений
функции...................................................................................................... 35
§5. Решение задач с параметрами............................................................ 43
Глава 3. Опытное преподавание темы «Применение тригонометрической подстановки для решения алгебраических задач» на факультативных занятиях по математике 48
Заключение.................................................................................................... 63
Литература.................................................................................................... 65
Приложение................................................................................................... 70
Введение
Решение задач является важнейшим видом учебной деятельности, в процессе которой учащимися усваивается математическая теория и развиваются логическое мышление и творческие способности. Развитие творческих способностей учащихся старших классов при обучении математике осуществляется более эффективно при вовлечении их в творческую деятельность, которая включает в себя:
1. Осознание, что данная конкретная задача есть представитель класса однородных задач.
2. Отыскание различных вариантов решения, их сопоставление, выявление сильных и слабых сторон каждого способа решения с целью выбора из них наиболее рационального, простого, «изящного». Сравнение и анализ различных решений одной задачи делает знания более прочными и осознанными. Установлено, что решение одной и той же задачи несколькими способами приносит больше пользы, чем решение подряд такого же числа стереотипных заданий.
3. Самостоятельное комбинирование известных способов деятельности.
4. Изобретение, по крайней мере, для данной задачи принципиально нового приема решения.
Для развития творческих способностей учащихся наиболее ценными являются сложные и нестандартные задачи. Решение сложных задач по математике во многом зависит от опыта их решения, от степени овладения методами их решения и техникой преобразований. Нестандартные задачи – это задачи, для решения которых у учащихся нет готового алгоритма и нужен самостоятельный поиск ключевой идеи. При решении нестандартных задач формируется математическая культура, воспитывается гибкость ума и осуществляется постижение единства математики. Вот почему, по мнению Д. Пойа, «нестандартные задачи могут способствовать интеллектуальному развитию ученика, чего нельзя сказать о стандартных» [36].
Важнейшим источником нестандартных задач являются олимпиадные и конкурсные задания. Как правило, нестандартные задачи требуют нестандартного подхода к их решению. Важно, чтобы у учащихся был создан запас методов решения нестандартных задач, так как не всегда школьники могут самостоятельно додуматься до нестандартного метода решения.
С точки зрения стандартных школьных методов решения алгебраических задач метод тригонометрической подстановки является нестандартным приемом. С другой стороны, тригонометрическая подстановка позволяет решать сложные многоходовые задачи. Она применяется при решении таких алгебраических задач, которые своими средствами не решаются или решаются очень сложно.
Другие работы
В кольце бульваров
evelin
: 26 августа 2013
Когда-то бульвар назывался Пречистенским и был разбит на западном конце стены Белого города, на крутой горе, которую пришлось срыть, поэтому внешняя сторона Гоголевского бульвара значительно ниже внутренней. На этой стороне когда-то был глубокий овраг, в котором протекал ручей Черторый (Чарторый), впадавший в Москву-реку у храма Христа Спасителя. Правая, высокая сторона проходит по древнему крепостному валу, здесь стояла стена Белого города.
Арка, образованная двумя павильонами станции метро "Кр
5 руб.
Проектирование участка мойки в условиях АТП с разработкой насадки для мойки автомобилей
Рики-Тики-Та
: 18 июля 2018
Содержание
Содержание 3
Введение 5
1.Исходные данные 7
2.Расчетно-организационная часть 8
2.1.Расчет производственной программы ремонта 8
2.2Проектирование производственного процесса на участке 9
3. Технологическая часть 16
3.1 Ремонтный чертеж детали, подлежащей восстановлению 16
3.2. Особенности конструкции детали 16
3.3. Определение класса детали 16
3.4. Анализ дефектов деталей 16
3.5. Выбор рационального способа восс
440 руб.
Расчет элементов автомобильных гидросистем МАМИ Задача 2.4 Вариант К
Z24
: 18 декабря 2025
Определить расход воды Q*, поступающей по трубе длиной l и диаметром d в бак, уровень жидкости в котором находится на высоте Н. Решить задачу при известном показании манометра pм и вакууме над жидкостью в баке pвак. Принять коэффициенты сопротивления на поворот трубы (в колене) ζкол = 0,2 и в кране ζкр. При решении также учесть потери на внезапное расширение при выходе их трубы в бак и потери на трение по длине трубы λ = 0,02. Режим течения считать турбулентным. (Величины рм, рвак, Н, l, d и ζкр
180 руб.
Контрольная работа №2 по дисциплине: Физика. Вариант №7. (1-й семестр)
Jack
: 29 марта 2013
Задача No367: От источника с напряжением U = 800 В необходимо передать потребителю мощность Р = 10 кВт на некоторое расстояние. Какое наибольшее сопротивление может иметь линия передачи, чтобы потери энергии в ней не превышали 10% от передаваемой мощности?
Задача No377: За время с при равномерно возраставшей силе тока в проводнике сопротивлением Ом выделилось количество теплоты . Определить заряд , проходящий в проводнике, если сила тока в начальный момент времени равна нулю.
Задача No40
250 руб.