Удивительные свойства упаковочной пленки
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Иногда случается так, что хорошо известные и изученные предметы и явления вдруг открываются новыми и необычными сторонами. Именно это произошло при исследовании упаковочной полимерной пленки на нашей кафедре. Казалось бы, что в ней особенного? Это просто упаковочный материал, без которого быт современного человека совершенно немыслим: металлизированные полимерные пленки (как правило, с тонким алюминиевым слоем) используют, например, для упаковки цветов, продуктов, промышленных товаров, применяют в полиграфии и во многих других областях. Неудивительно, что такие полимерные материалы выпускаются сегодня сотнями тысяч тонн.
Вполне естествен и интерес самых разных специалистов к столь распространенным в быту и промышленности объектам. Уже многие годы издается журнал “Thin Solid FILMs” (“Тонкие твердые пленки”), где освещаются научные и прикладные аспекты проблем, связанных с изучением и использованием систем, которые можно обозначить как “твердое покрытие на податливом основании”.
Удивительно, что при всем том научном интересе, который проявляют исследователи к подобным системам, до недавнего времени никому не пришло в голову просто растянуть упаковочную армированную пленку (она как раз и представляет собой типичную систему “твердое покрытие на податливом основании”) и посмотреть, что из этого получится. А посмотреть, как оказалось, есть на что: в микроскоп (сканирующий электронный) видны ряды светлых полос с регулярным волнистым рельефом, разделенных темными полосами.
Что это за ряды и каким образом они появляются?
Растягивая полимерную пленку, на которую твердое покрытие нанесено тонким слоем, мы растягиваем одновременно и этот слой. В результате покрытие распадается на множество “островов”-фрагментов. Они-то и “выстраиваются” рядами, образуя своеобразный рельеф. Поражает регулярность самопроизвольно возникающего рельефа и его строгая ориентация относительно оси растяжения: его углубления и вершины всегда ориентированы строго параллельно оси. Высока и степень порядка, достигаемая при фрагментации покрытия: образующиеся острова однородны по размерам и располагаются на поверхности податливой подложки весьма регулярным образом. Другими словами, на растянутой полимерной пленке возникают высокоорганизованные периодические структуры. Именно поэтому деформированная упаковочная пленка рассеивает свет, как настоящая дифракционная решетка.
Вполне естествен и интерес самых разных специалистов к столь распространенным в быту и промышленности объектам. Уже многие годы издается журнал “Thin Solid FILMs” (“Тонкие твердые пленки”), где освещаются научные и прикладные аспекты проблем, связанных с изучением и использованием систем, которые можно обозначить как “твердое покрытие на податливом основании”.
Удивительно, что при всем том научном интересе, который проявляют исследователи к подобным системам, до недавнего времени никому не пришло в голову просто растянуть упаковочную армированную пленку (она как раз и представляет собой типичную систему “твердое покрытие на податливом основании”) и посмотреть, что из этого получится. А посмотреть, как оказалось, есть на что: в микроскоп (сканирующий электронный) видны ряды светлых полос с регулярным волнистым рельефом, разделенных темными полосами.
Что это за ряды и каким образом они появляются?
Растягивая полимерную пленку, на которую твердое покрытие нанесено тонким слоем, мы растягиваем одновременно и этот слой. В результате покрытие распадается на множество “островов”-фрагментов. Они-то и “выстраиваются” рядами, образуя своеобразный рельеф. Поражает регулярность самопроизвольно возникающего рельефа и его строгая ориентация относительно оси растяжения: его углубления и вершины всегда ориентированы строго параллельно оси. Высока и степень порядка, достигаемая при фрагментации покрытия: образующиеся острова однородны по размерам и располагаются на поверхности податливой подложки весьма регулярным образом. Другими словами, на растянутой полимерной пленке возникают высокоорганизованные периодические структуры. Именно поэтому деформированная упаковочная пленка рассеивает свет, как настоящая дифракционная решетка.
Другие работы
Инженерная графика. Задание №35. Вариант №5. Деталь №3
Чертежи
: 29 сентября 2019
Все выполнено в программе КОМПАС 3D v16.
Боголюбов С.К. Индивидуальные задания по курсу черчения
Задание №35. Вариант №5. Деталь №3
Выполнить по аксонометрической проекции чертеж модели (построить три проекции и нанести размеры).
В состав работы входят следующие файлы:
- 3D модель детали;
- ассоциативный чертеж;
- чертеж в трёх видах комплексного оформления.
В некоторых ВУЗах по данному заданию чертят с разрезами, поэтому дополнительно к данной работе сделаны:
- ассоциативный чертеж с разрез
60 руб.
Отчет по практике: Первоначальная обработка геодезических измерений
Qiwir
: 5 января 2014
При прохождении производственной практики, мною выполнялись работы, связанные с обработкой геодезической информации.
Камеральная обработка результатов геодезических измерений является одной из важнейших частей процесса по получению координат пунктов геодезической сети. На самом деле, камеральная обработка результатов требуется практически при любых геодезических работах, начиная от работ по строительной геодезии, и заканчивая обработкой измерений в классной триангуляции, полигонометрии, трилате
5 руб.
Проблемы социологии старости
Elfa254
: 9 сентября 2013
Вряд ли кто-то возьмется утверждать и доказывать, что социологическая наука уделяла достаточно много внимания старости как особому социальному феномену. Во всяком случае, это внимание ни в какое сравнение не идет с заинтересованностью социологов самыми разнообразными аспектами юности: здесь можно уверенно констатировать, что социология молодежи конституировалась как весьма обширная и разветвленная теория среднего уровня. Правда, можно было бы сослаться на развитие такой научной дисциплины, как с
Уравнения математической физики
Lokard
: 10 августа 2013
Определение.
Дифференциальным уравнением называется уравнение, содержащее производные неизвестной функции. Если неизвестная функция зависит от одной переменной, то это обыкновенное дифференциальное уравнение, иначе - уравнение в частных производных.
Определение.
Наивысший порядок производных неизвестной функции, входящих в уравнение, называется порядком уравнения.
Определение.
Дифференциальное уравнение называется линейным, если производные и сама неизвестная функция входят в уравнение линейным
10 руб.