Экзамен. Дискретная математика. Билет №2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Проверить, является ли тавтологией формула: a&b→(a&b∨c∨ ̄c)
2. Применяя равносильные преобразования привести булеву функцию f = ( ̄x→ ̄( y))→( yz→ ̄x z) к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения. y(t)=x(t-1)→x(t)
2. Применяя равносильные преобразования привести булеву функцию f = ( ̄x→ ̄( y))→( yz→ ̄x z) к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения. y(t)=x(t-1)→x(t)
Дополнительная информация
Оценка:Хорошо
Дата оценки: 18.09.2013
Дата оценки: 18.09.2013
Похожие материалы
Дискретная математика. Экзамен. Билет № 2
blur
: 8 февраля 2023
1) Понятие принципа математической индукции (индуктивное определение, индуктивное доказательство, с примерами).
2) Алгоритмы поиска кратчайших расстояний в графе – назвать, кратко охарактеризовать. Пояснить, в чем различие алгоритмов Флойда-Уоршалла и Дейкстры.
3) Выяснить, справедливо ли равенство (AB)C = (AС)(BC) для произвольных множеств A, B, C. Если нет – привести контрпример (Пример, для которого равенство не выполнено).
4) Применяя равносильные преобразования, доказать тождество: x y
150 руб.
Экзамен. Дискретная математика. билет 2
backardy
: 19 октября 2019
Билет № 2
Дисциплина Дискретная математика
1. Теорема о «рукопожатиях»: о сумме степеней всех вершин графа.
2. Заданы универсальное множество U и три его подмножества A, B, C.
Проверить (доказать или опровергнуть) справедливость соотношения:
.
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства симметричности и транзитивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойственность, монотонность и лин
100 руб.
Экзамен по дискретной математике. Билет №2.
ДО Сибгути
: 5 февраля 2016
1. Теорема о «рукопожатиях»: о сумме степеней всех вершин графа.
2. Заданы универсальное множество U и три его подмножества A, B, C.
Проверить (доказать или опровергнуть) справедливость соотношения:
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства симметричности и транзитивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойственность, монотонность и линейность. Ответ обосновать.
5. В автомашине 7 мест. Ско
150 руб.
Дискретная математика. Экзамен. Билет №2
student90s
: 23 июля 2015
Билет №2.
1. Проверить, является ли тавтологией формула:
2. Применяя равносильные преобразования привести булеву функцию к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
40 руб.
Экзамен по дискретной математике. Билет №2
vsh9
: 19 марта 2015
1. Теорема о «рукопожатиях»: о сумме степеней всех вершин графа.
2. Заданы универсальное множество U и три его подмножества A, B, C.
Проверить (доказать или опровергнуть) справедливость соотношения:
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства симметричности и транзитивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойственность, монотонность и линейность. Ответ обосновать.
5. В автомашине 7 мест.
250 руб.
Экзамен по дискретной математике. Билет № 2
tefant
: 1 февраля 2013
Билет № 2
Факультет ИВТ (ДО) Курс 1 Семестр 2
Дисциплина Дискретная математика
Понятие принципа математической индукции (индуктивное определение, индуктивное доказательство, с примерами).
Индуктивное определение – это определение какого-либо понятия A(n), зависящего от неотрицательного целого параметра n, протекающее по следующей схеме: задаётся А(0), правило получения значения A(n+1), если А(n) уже задано. Например, понятие факториала числа n определяется так: n!=1 при n=0, (n+1)!=n!*(n+1
200 руб.
Дискретная математика. Экзамен. Билет №2.
sibgutido
: 25 января 2013
Дискретная математика. Экзамен. Билет №2.
1. Проверить, является ли тавтологией формула:
a&b->(a&b u c u ^c)
2. Применяя равносильные преобразования привести булеву функцию f=... к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
y(t)=...
В пунктах 2 и 3 нет возможности полностью записать уравнения, так как они содержат специфические символы, которые не прописываются текстом. Если нужно подробнее задание могу отправить
80 руб.
Дискретная математика. Экзамен. Билет 2
sanco25
: 3 апреля 2012
1. Проверить, является ли тавтологией формула: a&b—(a&b v c v c(черта серху)).
2. Применяя равносильные преобразования привести булеву функцию
к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
Построить автомат – это значит определить множества и задать функции переходов и выходов. В моменты дискретного времени, отмеченные числами натурального ряда, на вход автомата поступает сигнал, на выходе наблюдается сигнал. После пре
200 руб.
Другие работы
Техническая термодинамика и теплопередача ГАУСЗ (ТГСХА) Задача 3 Вариант 14
Z24
: 25 декабря 2025
Показать сравнительным расчётом целесообразность применение пара высоких начальных параметров и низкого конечного давления на примере паросиловой установки, работающей по циклу Ренкина, определив располагаемый теплоперепад, термический КПД цикла и удельный расход пара для двух различных значений начальных и конечных параметров пара.
Указать конечное значение степени сухости. Изобразить схему простейшей паросиловой установки и дать краткое описание её работы. Представить цикл Ренкина в диаграм
200 руб.
Гидромеханика: Сборник задач и контрольных заданий УГГУ Задача 3.24 Вариант б
Z24
: 6 октября 2025
Определить силу давления бензина на полусферическое дно закрытого цилиндрического резервуара диаметром D (рис. 3.24), если показание манометра, установленного на высоте h от оси полусферы, равно рман. Плотность бензина ρ = 750 кг/м³.
300 руб.
Філософія епохи Відродження. Середньовічна філософія
evelin
: 16 ноября 2013
План
I. СЕРЕДНЬОВІЧНА ФІЛОСОФІЯ
1. Патристика
2. Рання схоластика
3. Пізня схоластика
II. ФІЛОСОФІЯ ЕПОХИ ВІДРОДЖЕННЯ
1. Вчення про людину раннього Відродження
2. Натурфілософія Відродження
3. Соціальна філософія Відродження
I. Середньовічна філософія
V - XV вв. у історії Європи прийнято називати середньовіччям або феодалізмом (від латинського feodum - маєток). Феодальні держави проходили, як правило, через ряд стадій від політичної роздробленості (маєткові держави) через обмежену монархію д
5 руб.
Билет № 8 для зачета по дисциплине «Электротехника и электроника»
Помощь студентам СибГУТИ ДО
: 23 января 2014
1. Спектр одиночного сигнала импульса. Интеграл Фурье.
2. Определить ic(0+).
E=20 B,
R=2 кОм=2000 Ом
Рис.3 Схема исходной цепи
150 руб.