Деманганация воды
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
К настоящему времени разработаны и внедрены в практику различные методы очистки воды от марганца. Диаграмма Пурбе Е=ф(рН) дает наглядное представление о возможных способах очистки воды от марганца (см. рис. 17.1, б): увеличением окислительно-восстановительного потенциала среды путем применения сильных окислителей без корректирования значения рН воды, повышением значения рН воды при недостаточном окислительно-восстановительном потенциале в случае использования слабых окислителей; совместным применением более сильного окислителя и повышением значения рН воды.
Многие из них основаны на окислении присутствующего в воде иона марганца (II) до марганца (III) и марганца (IV), образующих гидроксиды, растворимость которых при рН>7 меньше 0,01 мг/л. Для этого применяют различные окислители: перманганат калия, озон, хлор и его производные, кислород воздуха. Кроме того, удаление марганца из воды может быть достигнуто с помощью ионного обмена (водород или натрий катионированием), при умягчении известковосодовым методом, при фильтровании воды через загрузку из марганцевого цеолита, биохимическими и другими методами.
Известные в технологии улучшения качества воды методы ее деманганации можно классифицировать на безреагентные и реагентные, на окислительные, сорбционные, ионообменные и биохимические. К числу безреагентных методов удаления марганца из воды следует отнести: глубокую аэрацию с последующим отстаиванием (вариант) и фильтрованием на скорых осветлительных фильтрах с сорбцией марганца на свежеобразованном гидроксиде железа, метод «Виредокс».
К числу реагентных методов деманганации воды прежде всего относятся окислительные с использованием хлора и его производных, озона, перманганата калия, технического кислорода. К ним относятся и методы, предусматривающие использование щелочных реагентов.
Для окисления марганца (II) в диоксид марганца должен поддерживаться определенный окислительно-восстановительный потенциал, значение которого зависит от требуемой в данном конкретном случае концентрации остаточного марганца и рН среды.
Удаление марганца методом глубокой аэрации с последующим фильтрованием предусматривает первоначальное извлечение из воды под вакуумом свободной углекислоты (рН повышается до 8 . . . 8,5), которое производится в вакуумно-эжекционном аппарате с последующим насыщением обрабатываемой воды кислородом воздуха в его эжекционной части, ее диспергирование до капельного состояния и фильтрование через зернистую загрузку. Технологическая схема состоит из скорых осветлительных фильтров, над зеркалом воды которых размещены напорные вакуумно-эжекционные аппараты. Метод применим при окисляемости исходной воды до 9,5 мг 02/л. Подобная технология позволяет успешно решать задачи не только деманганации, деферизации, но и дегазации воды.
Необходимым условием рассматриваемого метода даманганации воды является присутствие в ней железа (II), которое при окислении растворенным кислородом образует гидроксид железа, адсорбирующий на поверхности марганец (II) и каталитически влияющий на его окисление. Процесс успешно протекает при рН аэрированной воды ниже 8,5 и величине Е<0,4 В. Сорбционный характер извлечения марганца подтверждается изотермой адсорбции, построенной по результатам производств венного эксперимента, график которого адекватен изотерме Бедеккера — Фрейндлиха.
Многие из них основаны на окислении присутствующего в воде иона марганца (II) до марганца (III) и марганца (IV), образующих гидроксиды, растворимость которых при рН>7 меньше 0,01 мг/л. Для этого применяют различные окислители: перманганат калия, озон, хлор и его производные, кислород воздуха. Кроме того, удаление марганца из воды может быть достигнуто с помощью ионного обмена (водород или натрий катионированием), при умягчении известковосодовым методом, при фильтровании воды через загрузку из марганцевого цеолита, биохимическими и другими методами.
Известные в технологии улучшения качества воды методы ее деманганации можно классифицировать на безреагентные и реагентные, на окислительные, сорбционные, ионообменные и биохимические. К числу безреагентных методов удаления марганца из воды следует отнести: глубокую аэрацию с последующим отстаиванием (вариант) и фильтрованием на скорых осветлительных фильтрах с сорбцией марганца на свежеобразованном гидроксиде железа, метод «Виредокс».
К числу реагентных методов деманганации воды прежде всего относятся окислительные с использованием хлора и его производных, озона, перманганата калия, технического кислорода. К ним относятся и методы, предусматривающие использование щелочных реагентов.
Для окисления марганца (II) в диоксид марганца должен поддерживаться определенный окислительно-восстановительный потенциал, значение которого зависит от требуемой в данном конкретном случае концентрации остаточного марганца и рН среды.
Удаление марганца методом глубокой аэрации с последующим фильтрованием предусматривает первоначальное извлечение из воды под вакуумом свободной углекислоты (рН повышается до 8 . . . 8,5), которое производится в вакуумно-эжекционном аппарате с последующим насыщением обрабатываемой воды кислородом воздуха в его эжекционной части, ее диспергирование до капельного состояния и фильтрование через зернистую загрузку. Технологическая схема состоит из скорых осветлительных фильтров, над зеркалом воды которых размещены напорные вакуумно-эжекционные аппараты. Метод применим при окисляемости исходной воды до 9,5 мг 02/л. Подобная технология позволяет успешно решать задачи не только деманганации, деферизации, но и дегазации воды.
Необходимым условием рассматриваемого метода даманганации воды является присутствие в ней железа (II), которое при окислении растворенным кислородом образует гидроксид железа, адсорбирующий на поверхности марганец (II) и каталитически влияющий на его окисление. Процесс успешно протекает при рН аэрированной воды ниже 8,5 и величине Е<0,4 В. Сорбционный характер извлечения марганца подтверждается изотермой адсорбции, построенной по результатам производств венного эксперимента, график которого адекватен изотерме Бедеккера — Фрейндлиха.
Другие работы
Головка пневматического патрона для зажима кольца по внутр. поверхности И11.51.00.00 ЧЕРТЕЖ
coolns
: 3 февраля 2025
Головка пневматического патрона для зажима кольца по внутр. поверхности И11.51.00.00 ЧЕРТЕЖ
Приспособление предназначено для закрепления наружного кольца роликоподшипника по его внутренней конической поверхности.
Перед установкой кольца на приспособление шток 2, жестко связанный с пневмоприводом, находится в левом положении. Сухарики 3 под действием рессор 4 утоплены в корпусе 1. Кольцо подшипника устанавливают до соприкосновения с упорным кольцом 5. Пневмопривод под действием сжатого воздуха д
550 руб.
Штамп для жидкой штамповки детали
Марина82
: 9 ноября 2022
Все выполнено в программе Autodesk Inventor
Задание №18 из альбома заданий для выполнения сборочных чертежей Л.В. Борковская, Е.А. Гулянская, К.И. Зыкунова под ред. В.В. Рассохина.
Устройство и работа штампа. Штамп служит для жидкой штамповки изделия, изображенного на рис. 1. Штамп состоит из подвижной и неподвижной частей.
Нижнюю неподвижную часть собирают в следующем порядке. B центральное отверстие основания 1 снизу вставляют матрицу 4 так, чтобы выступ матрицы 110 вошел в расточку 110 ос
500 руб.
Гидравлика Задача 15.19 Вариант 67
Z24
: 24 декабря 2025
Насос работает на гидравлическую сеть. Напорная характеристика насоса задана в безмерных параметрах в таблице 1.
Параметры насоса (Q0 и H0) и гидравлической сети (Нг, d, l, λ, Σξ) заданы в таблице 2.
По заданным параметрам Q0 и H0 рассчитать и построить напорную характеристику насоса H=f(Q). Рассчитать и построить характеристику потребного напора гидравлической сети Нпотр=f(Q). Определить параметры рабочего режима насоса и гидравлической сети (рабочую точку A). (Определить напор, подачу и
200 руб.
Механика жидкости и газа СПбГАСУ 2014 Задача 8 Вариант 42
Z24
: 1 января 2026
Из бачка I вода подается при постоянном уровне через цилиндрический насадок диаметром d1 = (0,3 + 0,02·y) м в емкость, разделенную на два отсека: II и III. В перегородке есть прямоугольное отверстие размерами a = (0,4 + 0,02·y) м, b = (0,2 + 0,01·z) м. Полный напор над центром тяжести наружного отверстия диаметром d2 = (0,4 + 0,01·z) м H = (4,0 + 0,1·y) м.
Определить расход Q и высоты уровней воды в отсеках II и III, т. е. h1, h2, h3 (рис. 8).
220 руб.