Разработка алгоритмов и диалоговых программ автоматизированного формирования
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
Описание
Передо мной была поставлена задача :
1. - разработка алгоритмов и диалоговых программ автоматизированного формирования конечно-элементных моделей оболочковых и объемных конструкций, ограниченных поверхностями произвольной формы, при минимальном объеме исходных данных;
2. - разработка технологии создания постпроцессоров программ МКЭ;
3. - конструирование и расчет оболочковой конструкции на прочность и жесткость.
Впервые математическое описание поверхностей агрегатов самолета, применил в 30-х годах известный советский авиаконструктор А. Бартини. В последующие десятилетия для этих целей использовались аналитические кривые и поверхности. В последнее десятилетие мощный математический аппарат для инженерно-геометрических расчетов дала теория сплайн-функций.
На плакате (1) показаны формулы сплайн-интерполяции с переменным шагом. Эту теорию мы используем в работе. Выражение для сплайна на частичном отрезке [xj-1, xj ] имеет вид (плакат), где mj - наклоны сплайна в узлах, которые определяются из решения СЛАУ (плакат). Поскольку число уравнений на 2 меньше, чем число узлов, то необходимо дополнить их краевыми условиями. На плакате показаны 2 вида этих условий.
На плакате (2) показана дискретизация оболочковой и объемной конструкций.
Процедуру дискретизации оболочковых конструкций рассмотрим на примере построения оболочки в основании которой лежит прямоугольная рама.
Заданы : координаты опорных точек в основании и высота в середине конструкции.
Задаемся граничными условиями по контуру основания, которые задают форму оболочки в местах прилегания к основанию. Вводим желаемую степень дискретизации.
Построение сетки узлов конечно-элементной модели (КЭМ) с помощью сплайн-интерполяции начинаем с построения сплайна по 3 точкам: опорной точки 5 и 2 точкам на середине ребер основания, параллельных оси 0X. Задаемся числом участков по оси 0X и 0Y. Вычислим координаты границ участков и координаты точек на полученной сплайне, с учетом введенной степени дискретизации. Строим семейство сплайнов параллельных оси 0X по известным координатам X и Z. И в результате, вычислив координаты точек на полученных сплайнах, получаем сетку с пронумерованными узлами. “Зашиваем” ее плоскими треугольными конечными элементами.
1. - разработка алгоритмов и диалоговых программ автоматизированного формирования конечно-элементных моделей оболочковых и объемных конструкций, ограниченных поверхностями произвольной формы, при минимальном объеме исходных данных;
2. - разработка технологии создания постпроцессоров программ МКЭ;
3. - конструирование и расчет оболочковой конструкции на прочность и жесткость.
Впервые математическое описание поверхностей агрегатов самолета, применил в 30-х годах известный советский авиаконструктор А. Бартини. В последующие десятилетия для этих целей использовались аналитические кривые и поверхности. В последнее десятилетие мощный математический аппарат для инженерно-геометрических расчетов дала теория сплайн-функций.
На плакате (1) показаны формулы сплайн-интерполяции с переменным шагом. Эту теорию мы используем в работе. Выражение для сплайна на частичном отрезке [xj-1, xj ] имеет вид (плакат), где mj - наклоны сплайна в узлах, которые определяются из решения СЛАУ (плакат). Поскольку число уравнений на 2 меньше, чем число узлов, то необходимо дополнить их краевыми условиями. На плакате показаны 2 вида этих условий.
На плакате (2) показана дискретизация оболочковой и объемной конструкций.
Процедуру дискретизации оболочковых конструкций рассмотрим на примере построения оболочки в основании которой лежит прямоугольная рама.
Заданы : координаты опорных точек в основании и высота в середине конструкции.
Задаемся граничными условиями по контуру основания, которые задают форму оболочки в местах прилегания к основанию. Вводим желаемую степень дискретизации.
Построение сетки узлов конечно-элементной модели (КЭМ) с помощью сплайн-интерполяции начинаем с построения сплайна по 3 точкам: опорной точки 5 и 2 точкам на середине ребер основания, параллельных оси 0X. Задаемся числом участков по оси 0X и 0Y. Вычислим координаты границ участков и координаты точек на полученной сплайне, с учетом введенной степени дискретизации. Строим семейство сплайнов параллельных оси 0X по известным координатам X и Z. И в результате, вычислив координаты точек на полученных сплайнах, получаем сетку с пронумерованными узлами. “Зашиваем” ее плоскими треугольными конечными элементами.
Другие работы
Теория электромагнитной совместимости радиоэлектронных средств и систем. Экзамен. Билет №5
zzzzzzz
: 19 марта 2020
Билет №5
1. В чем отличие побочных и внеполосных неосновных каналов приема?
2. В чем отличие идеализированных и реальных диаграмм направленности антенн?
3. Определение зоны обслуживания для передатчика цифрового звукового вещания.
4. Линейные методы распределения каналов.
5. Поясните принцип повторного использования частот, применяемый в системах сотовой связи.
Работа была сдана в октябре 2019
Оценка: Отлично
Проверила: Кокорич М. Г.
100 руб.
Контрольная работа по предмету «Экономико-математические модели». Вариант № 1
xtrail
: 4 апреля 2013
Задача №1
Дано:
Функция полезности потребителя имеет вид:
Запишите задачу потребителя и на ее основе алгебраически постройте уравнения функций спроса Маршалла.
Задача №2
Дано:
Функция потребления: C = 0,8Y + 40.
Спрос предпринимателей на инвестиции: I=300–40i.
Государственные закупки на рынке благ: G = 60.
Определить:
Уравнение линии IS.
Задача №3
Дано:
В обращении находится 50 ден.ед., скорость их обращения – V = 10 оборотов за период.
Реальный спрос на деньги как имущество: lим = 60 /i.
Сп
100 руб.
Маркетинг в отрасли. Вариант №5
Basileus030
: 7 ноября 2016
Задача 1
Фирма осуществляет производство и продажу товара через сеть фирменных магазинов. Данные о цене товара и объеме проданных товаров в среднем за сутки, в одном из географических сегментов рынка приведены в таблице 1.1.
Таблица 1.1. Данные о цене и объеме проданных товаров в среднем за сутки
Цена единицы товара, тыс. руб. (х)
Объем продажи товара в средней за сутки, шт. (y)
3,00 48
3,05 46
...
70 руб.
Лабораторная работа № 4 по курсу: “Теория сложностей вычислительных процессов и структур”. Вариант - 2.
Doctor_Che
: 9 февраля 2012
Номер варианта: 2.
Задание на лабораторную работу: “Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры”.
Условие задачи:
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет)
35 руб.