Сравнительный анализ численных методов
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Содержание
Введение
1. Постановка задачи
2. Методы решения нелинейных уравнений
2.1 Общие сведения
2.2 Метод касательных (метод Ньютона)
2.2.1 Общие сведения
2.2.2 Решение нелинейного уравнения методом касательных
2.3 Метод хорд
2.3.1 Общие сведения
2.3.2 Решение нелинейного уравнения методом хорд
2.4 Вывод
2.5 Метод простых итераций
2.5.1 Общие сведения
2.5.2 Решение нелинейного уравнения методом простых итераций
2.6 Программа для решения нелинейных уравнений
3. Решение нелинейных уравнений методом интерполирования
3.1 Интерполяция
3.2 Многочлен Лагранжа
3.3 Интерполяция сплайнами
3.4 Использование интерполяции на практике
3.4.1 Интерполяция с помощью многочлена Лагранжа
3.4.2 Обратная интерполяция
3.4.3 Интерполяция сплайнами
3.5 Программа для использования интерполяции
4. Итерационные методы решения систем линейных алгебраических уравнений
4.1 Общие сведения
4.2 Метод простой итерации
4.2.1 Описание метода
4.2.2 Решение СЛАУ методом простых итераций
4.2.3 Программа для решения СЛАУ методом простых итераций
4.3 Метод Зейделя
4.3.1 Описание метода
4.3.2 Решение СЛАУ методом Зейделя
4.3.3 Программа дл решения СЛАУ методом Зейделя
4.4 Сравнительный анализ
5. Сравнительный анализ различных методов численного дифференцирования и интегрирования
5.1 Методы численного дифференцирования
5.1.1 Описание метода
5.1.2 Нахождение производной
5.2 Методы численного интегрирования
5.2.1 Общие сведения
5.2.2 Нахождение определенного интеграла
5.3 Решение ОДУ
5.3.1 Решение ОДУ методом Эйлера
5.3.2 Решение ОДУ методом Рунге-Кутты
6.Численные методы решения обыкновенных дифференциальных уравнений
6.1 Общие сведения
6.2 Метод Эйлера
Заключение
Список использованной литературы
Введение
На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит главным образом не потому, что мы не умеем этого сделать, а поскольку искомое решение обычно не выражается в привычных для нас элементарных или других известных функциях. Поэтому важное значение приобрели численные методы, особенно в связи с возрастанием роли математических методов в различных областях науки и техники и с появлением высокопроизводительных ЭВМ.
Под численными методами подразумеваются методы решения задач, сводящиеся к арифметическим и некоторым логическим действиям над числами, т.е. к тем действиям, которые выполняет ЭВМ.
В настоящее время появилось значительное число различных программных продуктов (MathCAD, MathLAB и т.д.), с помощью которых, задавая только входные данные, можно решить значительное число задач.
Конечно, использование таких программных продуктов значительно сокращает время и ресурсы по решению ряда важных задач. Однако, использование этих программ без тщательного анализа метода, с помощью которого решается задача, нельзя гарантировать, что задача решена правильно. Поэтому для более полного понимания того, как осуществляется расчет различного вида уравнений и их систем, необходимо теоретически изучить методы их решения и на практике их проработать.
Введение
1. Постановка задачи
2. Методы решения нелинейных уравнений
2.1 Общие сведения
2.2 Метод касательных (метод Ньютона)
2.2.1 Общие сведения
2.2.2 Решение нелинейного уравнения методом касательных
2.3 Метод хорд
2.3.1 Общие сведения
2.3.2 Решение нелинейного уравнения методом хорд
2.4 Вывод
2.5 Метод простых итераций
2.5.1 Общие сведения
2.5.2 Решение нелинейного уравнения методом простых итераций
2.6 Программа для решения нелинейных уравнений
3. Решение нелинейных уравнений методом интерполирования
3.1 Интерполяция
3.2 Многочлен Лагранжа
3.3 Интерполяция сплайнами
3.4 Использование интерполяции на практике
3.4.1 Интерполяция с помощью многочлена Лагранжа
3.4.2 Обратная интерполяция
3.4.3 Интерполяция сплайнами
3.5 Программа для использования интерполяции
4. Итерационные методы решения систем линейных алгебраических уравнений
4.1 Общие сведения
4.2 Метод простой итерации
4.2.1 Описание метода
4.2.2 Решение СЛАУ методом простых итераций
4.2.3 Программа для решения СЛАУ методом простых итераций
4.3 Метод Зейделя
4.3.1 Описание метода
4.3.2 Решение СЛАУ методом Зейделя
4.3.3 Программа дл решения СЛАУ методом Зейделя
4.4 Сравнительный анализ
5. Сравнительный анализ различных методов численного дифференцирования и интегрирования
5.1 Методы численного дифференцирования
5.1.1 Описание метода
5.1.2 Нахождение производной
5.2 Методы численного интегрирования
5.2.1 Общие сведения
5.2.2 Нахождение определенного интеграла
5.3 Решение ОДУ
5.3.1 Решение ОДУ методом Эйлера
5.3.2 Решение ОДУ методом Рунге-Кутты
6.Численные методы решения обыкновенных дифференциальных уравнений
6.1 Общие сведения
6.2 Метод Эйлера
Заключение
Список использованной литературы
Введение
На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит главным образом не потому, что мы не умеем этого сделать, а поскольку искомое решение обычно не выражается в привычных для нас элементарных или других известных функциях. Поэтому важное значение приобрели численные методы, особенно в связи с возрастанием роли математических методов в различных областях науки и техники и с появлением высокопроизводительных ЭВМ.
Под численными методами подразумеваются методы решения задач, сводящиеся к арифметическим и некоторым логическим действиям над числами, т.е. к тем действиям, которые выполняет ЭВМ.
В настоящее время появилось значительное число различных программных продуктов (MathCAD, MathLAB и т.д.), с помощью которых, задавая только входные данные, можно решить значительное число задач.
Конечно, использование таких программных продуктов значительно сокращает время и ресурсы по решению ряда важных задач. Однако, использование этих программ без тщательного анализа метода, с помощью которого решается задача, нельзя гарантировать, что задача решена правильно. Поэтому для более полного понимания того, как осуществляется расчет различного вида уравнений и их систем, необходимо теоретически изучить методы их решения и на практике их проработать.
Другие работы
Графическая работа 5 (2-ая часть). Вариант 2 - Сечение пирамиды плоскостью
Чертежи по сборнику Миронова 1984
: 12 апреля 2024
Описание:
Возможные программы для открытия данных файлов:
WinRAR (для распаковки архива *.zip или *.rar)
КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d
Любая программа для ПДФ файлов.
Миронов Б.Г. Сборник заданий по инженерной графике с примерами выполнения чертежей на компьютере.
Графическая работа 5 (2-ая часть). Вариант 2 - Сечение пирамиды плоскостью
Построить три проекции пятиугольной пирамиды, усеченной плоскостью Р, натуральную величину сечения, развертку и изометрию.
Дан
120 руб.
Радиоприемные устройства. Экзамен. Билет №17
hedgehog
: 21 октября 2014
1. Усилители промежуточной частоты с фильтрами сосредоточенной избирательности. Достоинства. Виды применяемых фильтров.
2. Найдите и исправьте ошибки в схеме усилителя радиочастоты (УРЧ).Выполните в схеме эмиттерную стабилизацию точки покоя.
150 руб.
Система верхнего привода HCI-400 фирмы ТЕСКО-Силовой вертлюг с электроприводом-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
as.nakonechnyy.92@mail.ru
: 27 марта 2019
Система верхнего привода HCI-400 фирмы ТЕСКО-Силовой вертлюг с электроприводом-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
Системы верхнего привода (СВП) буровых установок получили широкое распространение в мировой практике. Общее количество действующих СВП превышает 600 комплектов, из которых около 100 используются в наземных буровых установках, остальные для бурения на море. Широкое внедрение в мировую практику верхнего привода объясняется его преимуществами при проводк
1939 руб.
Экзаменационная работа По дисциплине: Средства коммутации и доставки сообщений в широкополосных сетях связи
pvv1962
: 5 апреля 2015
1. Приведите структуру стека протоколов маршрутизации PNNI.
2. Приведите формат адреса для логического узла в PNNI, который на данном уровне представляет одноранговую группу.
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
«Средства коммутации и доставки сообщений в Ш ЦСС». Экзамен
Билет № 5
150 руб.