Вычисление определителя матрицы прямым методом
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ВЫБОР И ОБОСНОВАНИЕ ЧИСЛЕННОГО МЕТОДА РЕШЕНИЯ ЗАДАЧИ
1.1 Определение матрицы
1.2 Определение детерминанта
1.3 Метод исключения Гаусса. Вычисление определителя методом исключения
2. АЛГОРИТМ РАБОТЫ ПРОГРАММЫ
2.1 Структура алгоритма и данных
2.2 Схема алгоритма
3. ТЕКСТ ПРОГРАММЫ
3.1 Описание переменных и структур данных
3.2 Текст программы на языке Pascal
4. ТЕСТОВАЯ ЗАДАЧА
4.1 Математическое решение задачи
4.2 Решение, полученное с использованием разработанного программного обеспечения
5. ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЮ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
Современная математика ориентирована на использование компьютеров для прикладных расчетов. Любые математические приложения начинаются с построения модели явления (изделия, действия, ситуации или другого объекта), к которому относится изучаемый вопрос. Классическими примерами математических моделей могут служить определенный интеграл, уравнение колебаний маятника, уравнение теплообмена, уравнения упругости, уравнения электромагнитных волн и другие уравнения математической физики и даже модель формальных рассуждений – алгебру Буля.
Основополагающими средствами изучения математических моделей являются аналитические методы: получение точных решений в частных случаях (например, табличные интегралы), разложения в ряды. Определенную роль издавна играли приближенные вычисления. Например, для вычисления определенного интеграла использовались квадратурные формулы.
Появления в начале XX века электронных вычислительных машин (компьютеров) радикально расширило возможности приложения математических методов в традиционных областях (механике, физике, технике) и вызвало бурное проникновение математических методов в нетрадиционные области (управление, экономику, химию, биологию, психологию, лингвистику, экологию и т.п.).
Компьютер дает возможность запоминать большие (но конечные) массивы чисел и производить над ними арифметические операции и сравнения с большой (но конечной) скоростью по заданной вычислителем программе. Поэтому на компьютере можно изучать только те математические модели, которые описываются конечными наборами чисел, и использовать конечные последовательности арифметических действий, а также сравнений чисел по величине (для автоматического управления дальнейшими вычислениями).
С использованием компьютера стал возможен вычислительный эксперимент, т. e. расчет в целях проверки гипотез, а также в целях наблюдения за поведением модели, когда заранее не известно, что именно заинтересует исследователя. В процессе численного эксперимента происходит по существу уточнение исходной математической постановки задачи. В процессе расчетов на компьютере происходит накопление информации, что дает возможность в конечном счете произвести отбор наиболее интересных ситуаций. На этом пути сделано много наблюдений и открытий, стимулирующих развитие теории и имеющих важные практические применения.
С помощью компьютера возможно применение математических методов и в нетрадиционных областях, где не удается построить компактные математические модели вроде дифференциальных уравнений, но удается построить модели, доступные запоминанию и изучению на компьютере. Модели для компьютеров в этих случаях представляют собой цифровое кодирование схемы, изучаемого объекта (например, языка) и отношений между его элементами (словами, фразами). Сама возможность изучения таких моделей на компьютере стимулирует появление этих моделей, а для создания обозримой модели необходимо выявление законов, действующих в исходных объектах. С другой стороны, получаемые на компьютере результаты (например, машинный перевод упрощенных текстов с одного языка на другой) вносят критерий практики в оценку теорий (например, лингвистических теорий), положенных в основу математической модели.
Благодаря компьютерам стало возможным рассматривать вероятностные модели, требующие большого числа пробных расчетов, имитационные модели, которые отражают моделируемые свойства объекта без упрощений (например, функциональные свойства телефонной сети).
ВВЕДЕНИЕ
1. ВЫБОР И ОБОСНОВАНИЕ ЧИСЛЕННОГО МЕТОДА РЕШЕНИЯ ЗАДАЧИ
1.1 Определение матрицы
1.2 Определение детерминанта
1.3 Метод исключения Гаусса. Вычисление определителя методом исключения
2. АЛГОРИТМ РАБОТЫ ПРОГРАММЫ
2.1 Структура алгоритма и данных
2.2 Схема алгоритма
3. ТЕКСТ ПРОГРАММЫ
3.1 Описание переменных и структур данных
3.2 Текст программы на языке Pascal
4. ТЕСТОВАЯ ЗАДАЧА
4.1 Математическое решение задачи
4.2 Решение, полученное с использованием разработанного программного обеспечения
5. ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЮ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
Современная математика ориентирована на использование компьютеров для прикладных расчетов. Любые математические приложения начинаются с построения модели явления (изделия, действия, ситуации или другого объекта), к которому относится изучаемый вопрос. Классическими примерами математических моделей могут служить определенный интеграл, уравнение колебаний маятника, уравнение теплообмена, уравнения упругости, уравнения электромагнитных волн и другие уравнения математической физики и даже модель формальных рассуждений – алгебру Буля.
Основополагающими средствами изучения математических моделей являются аналитические методы: получение точных решений в частных случаях (например, табличные интегралы), разложения в ряды. Определенную роль издавна играли приближенные вычисления. Например, для вычисления определенного интеграла использовались квадратурные формулы.
Появления в начале XX века электронных вычислительных машин (компьютеров) радикально расширило возможности приложения математических методов в традиционных областях (механике, физике, технике) и вызвало бурное проникновение математических методов в нетрадиционные области (управление, экономику, химию, биологию, психологию, лингвистику, экологию и т.п.).
Компьютер дает возможность запоминать большие (но конечные) массивы чисел и производить над ними арифметические операции и сравнения с большой (но конечной) скоростью по заданной вычислителем программе. Поэтому на компьютере можно изучать только те математические модели, которые описываются конечными наборами чисел, и использовать конечные последовательности арифметических действий, а также сравнений чисел по величине (для автоматического управления дальнейшими вычислениями).
С использованием компьютера стал возможен вычислительный эксперимент, т. e. расчет в целях проверки гипотез, а также в целях наблюдения за поведением модели, когда заранее не известно, что именно заинтересует исследователя. В процессе численного эксперимента происходит по существу уточнение исходной математической постановки задачи. В процессе расчетов на компьютере происходит накопление информации, что дает возможность в конечном счете произвести отбор наиболее интересных ситуаций. На этом пути сделано много наблюдений и открытий, стимулирующих развитие теории и имеющих важные практические применения.
С помощью компьютера возможно применение математических методов и в нетрадиционных областях, где не удается построить компактные математические модели вроде дифференциальных уравнений, но удается построить модели, доступные запоминанию и изучению на компьютере. Модели для компьютеров в этих случаях представляют собой цифровое кодирование схемы, изучаемого объекта (например, языка) и отношений между его элементами (словами, фразами). Сама возможность изучения таких моделей на компьютере стимулирует появление этих моделей, а для создания обозримой модели необходимо выявление законов, действующих в исходных объектах. С другой стороны, получаемые на компьютере результаты (например, машинный перевод упрощенных текстов с одного языка на другой) вносят критерий практики в оценку теорий (например, лингвистических теорий), положенных в основу математической модели.
Благодаря компьютерам стало возможным рассматривать вероятностные модели, требующие большого числа пробных расчетов, имитационные модели, которые отражают моделируемые свойства объекта без упрощений (например, функциональные свойства телефонной сети).
Другие работы
Замок. Задание №64. Вариант №10
bublegum
: 10 августа 2021
Замок Задание 64 Вариант 10
Заменить вид спереди разрезом А-А.
3d модель и чертеж (все на скриншотах изображено) выполнены в компасе 3D v13, возможно открыть и выше версиях компаса.
Просьба по всем вопросам писать в Л/С. Отвечу и помогу.
85 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 8.26
Z24
: 17 октября 2025
Какую разность уровней h покажет дифференциальный манометр, заполненный водой, при расходе воздуха Q=8000 м³/ч (рис. 8.7), если плотность воздуха ρ=1,2 кг/м³? Трубопровод переменного сечения расположен горизонтально. Диаметр широкого сечения трубы d1=50 см, узкого d2=20 см. Потери напора hW=0,1 м.
180 руб.
ДО СИБГУТИ ДО СИБГУТИ Информатика Контрольная работа Вариант16
Антон224
: 1 октября 2022
ДО СИБГУТИ ДО СИБГУТИ Информатика Контрольная работа Вариант16
Разработать программу, которая должна начать работу с диалога с пользователем: какую операцию с файлом он желает выполнить:
а) добавить запись в файл или начать запись нового файла;
б) начать обработку созданного файла;
Предусмотреть возможность выполнения данных операций многократно.
В соответствии с индивидуальным заданием, номер которого совпадает с Вашими двумя последними цифрами пароля, разра
149 руб.
Корпус - Вариант 1. Задание 66
.Инженер.
: 3 сентября 2025
С.К. Боголюбов. Индивидуальные задания по курсу черчения. Задание 66. Вариант 1. Корпус.
По приведенные изображениям детали построить вид сверху и выполнить необходимые разрезы.
В состав работы входит:
По заданию выполненный чертеж детали;
3D модель детали.
100 руб.