Метод анализа главных компонентов регрессионной модели измерений средствами нейронных сетей
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Список сокращений
Введение
1. Организация нейронных сетей для вычисления дисперсионных характеристик случайных сигналов
1.1 Архитектуры нейронных сетей
1.2 Однослойные сети прямого распространения
1.3 Многослойные сети прямого распространения
1.4 Инварианты в структуре нейронной сети
1.5 Анализ главных компонентов алгоритмами самообучения нейронных сетей
1.5.1 Структура анализа главных компонентов
1.5.2 Основные представления данных
1.5.3 Матричная формулировка алгоритма самообучения
1.5.4 Анализ главных компонентов на основе фильтра Хебба
1.5.5 Исследование сходимости при решении главной компоненты сигнала
1.5.6 Оптимальность обобщенного алгоритма Хебба
1.5.7 Алгоритм GHA в сжатом виде
2. Оценка параметров регрессионных уравнений при аппроксимации дисперсионных распределений методом АГК
2.1 Организация наблюдений и регрессионные методы оценки параметров
2.2.1 Оценивание по конечному числу наблюдений
2.1.2 Оценки по методу наименьших квадратов
2.2 Нейронные сети и статистические характеристики
2.3 Различие нейронных сетей и статистики
2.4 Нейронные сети и статистические экспертные системы
2.5 Сети интервальных нейронов
2.6 Сети и свойства численных структур регрессионного анализа
2.6.1 Идея сингулярного разложения матрицы данных
2.6.2 Линейный МНК
2.7 Нелинейные решения проблем стандартного МНК
2.7.1 Аппроксимация линейным или нелинейным МНК
2.7.2 Нелинейный МНК с использованием гессиана или без него
2.7.3 Нелинейный МНК как обратная коммуникация
2.8 Решение параметров регрессионного уравнения с использованием аппроксимации ковариационной матрицы по данным ГК при обучении НС
Заключение
Библиографический список использованной литературы
Список сокращений
АГК – анализ главных компонент;
БД – база данных;
ИТ – информационные технологии;
МНК – метод наименьших квадратов;
НС – нейронные сети;
ОС – операционная система;
ПК – персональный компьютер;
ПО – программное обеспечение;
ЦОС – цифровая обработка сигналов;
ЭВМ – электронная вычислительная машина;
Введение
1. Организация нейронных сетей для вычисления дисперсионных характеристик случайных сигналов
1.1 Архитектуры нейронных сетей
1.2 Однослойные сети прямого распространения
1.3 Многослойные сети прямого распространения
1.4 Инварианты в структуре нейронной сети
1.5 Анализ главных компонентов алгоритмами самообучения нейронных сетей
1.5.1 Структура анализа главных компонентов
1.5.2 Основные представления данных
1.5.3 Матричная формулировка алгоритма самообучения
1.5.4 Анализ главных компонентов на основе фильтра Хебба
1.5.5 Исследование сходимости при решении главной компоненты сигнала
1.5.6 Оптимальность обобщенного алгоритма Хебба
1.5.7 Алгоритм GHA в сжатом виде
2. Оценка параметров регрессионных уравнений при аппроксимации дисперсионных распределений методом АГК
2.1 Организация наблюдений и регрессионные методы оценки параметров
2.2.1 Оценивание по конечному числу наблюдений
2.1.2 Оценки по методу наименьших квадратов
2.2 Нейронные сети и статистические характеристики
2.3 Различие нейронных сетей и статистики
2.4 Нейронные сети и статистические экспертные системы
2.5 Сети интервальных нейронов
2.6 Сети и свойства численных структур регрессионного анализа
2.6.1 Идея сингулярного разложения матрицы данных
2.6.2 Линейный МНК
2.7 Нелинейные решения проблем стандартного МНК
2.7.1 Аппроксимация линейным или нелинейным МНК
2.7.2 Нелинейный МНК с использованием гессиана или без него
2.7.3 Нелинейный МНК как обратная коммуникация
2.8 Решение параметров регрессионного уравнения с использованием аппроксимации ковариационной матрицы по данным ГК при обучении НС
Заключение
Библиографический список использованной литературы
Список сокращений
АГК – анализ главных компонент;
БД – база данных;
ИТ – информационные технологии;
МНК – метод наименьших квадратов;
НС – нейронные сети;
ОС – операционная система;
ПК – персональный компьютер;
ПО – программное обеспечение;
ЦОС – цифровая обработка сигналов;
ЭВМ – электронная вычислительная машина;
Другие работы
Гомогенизатор клапанного типа
Slolka
: 20 октября 2013
В данном курсовом проекте описана методика технологических расчетов гомогенизатора клапанного типа, которые включают в себя расчеты подтверждающие работоспособность проектируемой конструкции машины, а также технико-экономические расчеты подтверждающие целесообразность данного усовершенствования. Также представлена линия по производству пастеризованного молока, в процессе приготовления которого участвует проектируемая машина. В приложении представлены технические документы к данной машине, а такж
10 руб.
Контрольная работа по дисциплине «Теория вероятностей, математическая статистика и случайные процессы». Вариант №7
GTV8
: 9 сентября 2012
Задача No 1
Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны? p=0,15; k=5.
Задача No 2
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. K=4; L=5; M=5; N=4; P=2; R=4.
Задача No 3
В тип
500 руб.
Программирование разветвляющихся процессов 3 вариант
sergunya_c
: 21 сентября 2009
Задание: Даны переменные x и y. Выяснить, принадлежит ли точка с координатами (x,y) кругу единичного радиуса с центром в начале координат.
Схема алгоритма.
Произведем вычисления с помощью уравнения окружности
Программа на языке Basic:
Результаты выполнения программы:
Презентация - DDOS-атаки
Elfa254
: 8 июня 2013
Понятие DDOS-атаки,
классификация и краткое описание каждого типа DDOS-атак,
методы обнаружения,
методы защиты,
вывод.
10 руб.