Контрольная работа по дисциплине: "Метрология, стандартизация и сертификация". Вариант №12
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1.
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонения (СКО) погрешности результата наблюдений (стандартную неопределенность единичного измерения) S;
3. Границы максимальной неопределенность случайной составляющей погрешности результата наблюдений Δ макс;
4. Оценку среднего квадратического отклонения погрешности случайной составляющей результата измерения (стандартную неопределенность результата измерения) S(l ̅);
5. Границы доверительного интервала (расширенную неопределенность) для результата измерения расстояния до места повреждения ε при заданной доверительной вероятности α ;
6. Записать результат измерения расстояния до места повреждения в соответствии с нормативными документами.
7. Систематическую составляющую погрешности измерения рефлектометра θ, если после обнаружения места повреждения было установлено. что действительное расстояние до него составляло l_∂ метров. Сравните ее с доверительным интервалом случайной составляющей погрешности результата измерения, и сделать вывод;
8.Предложить способ уменьшения оценки СКО случайной составляющей погрешности результата измерения в D раз.
Таблица.1.1 Исходные данные
M i l_∂ ,м D
1 5 – 10 272,3 2,1
Таблица 1.2 Исходные данные
N i α
2 60 – 68 0,98
Таблица 1.3 Результаты однократных измерений.
I l_i i l_i
5 275,81 60 274,63
6 273,50 61 275,30
7 276,65 62 275,23
8 275,81 63 275,52
9 273,28 64 276,03
10 275,30 65 276,56
66 273,75
67 274,76
68 274,24
Задача 2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн (рисунок 2.1). (Рисунок смотрите на скрине)
Мощность в нагрузке измеряют с помощью вольтметра V при нормальных условиях измерения. Показания прибора и его метрологические характеристики – условное обозначение класса точности и конечное значение шкалы прибора или диапазона измерения приведены в таблице 2.1. В таблице 2.2 приведены: метрологические характеристики измерительного генератора – числовое значение сопротивления Rг и его относительная погрешность δ Rг; сопротивления нагрузки – значения сопротивления Rн и его относительная погрешность δ Rн.
MN = 12
Таблица 2.1
M 1
Показание амперметра IA, мА 19
Класс точности амперметра % 2
Конечное значение шкалы амперметра или диапазон измерения, мА -50 ̧ 50
Таблица 2.2
N 2
Rг , Ом 75
Относительная погрешность, δ Rг, % 7,2
Rн, Ом 450
Относительная погрешность, δ Rн, % 3,5
Определить абсолютный уровень напряжения РE
Определить абсолютный уровень мощности Р∑
Необходимо определить:
1. Абсолютный уровень ЭДС генератора рE
2. Абсолютный уровень суммарной мощности, выделяемой на внутреннем сопротивлении генератора и сопротивлении нагрузки р∑.
3. Оценить границы абсолютной погрешности измерения абсолютных уровней напряжения и мощности, определенных в п.1 и п.2.
4. Оформить результаты измерения абсолютных уровней напряжения и мощности в соответствии с нормативными документами.
Задача No 3
На рисунке 3.1 показана осциллограмма периодического сигнала, который наблюдали на выходе исследуемого устройства.
Требуется найти:
Аналитическое описание исследуемого сигнала.
Пиковое (Um), среднее (Uср ), средневыпрямленное (Uср.в) и среднеквадратическое (U) значения напряжения выходного сигнала заданной формы.
Пиковое (U_m^~), среднее (U_cp^~), средневыпрямленное (U_(cp.в)^~) и среднеквадратическое (U^~) значения напряжения переменной составляющей заданного выходного сигнала.
Коэффициенты амплитуды (〖K_a,K〗_a^~), формы (〖K_ф,K〗_ф^~) и усреднения (〖K_y,K〗_y^~) всего исследуемого сигнала и его переменной составляющей.
Показания вольтметров с различными типами преобразователей с закрытым (З) или открытым (О) входом в соответствии с заданием, если вольтметры проградуированы в среднеквадратических значениях для гармонического сигнала.
Оценить предел допускаемой относительной погрешности (расширенной неопределенности) показаний вольтметров, определенных в 5 пункте задания, если используемые измерительные приборы имеют класс точности γ и конечное значение шкалы (предел измерения) Uк указанные в таблицах 3.1 и 3.2.
Оформить результаты измерений напряжения вольтметрами в соответствии с нормативными документами, если измерения проведены в нормальных условиях.
Таблица 3.1
N Рис. 3.1 Т, мкс τ, мкс Класс
точности γ Найти показания вольтметров
2 д 30 15 2 UV1 UV2 UV3 UV4
СВ, О ПВ, З КВ, З КВ, О
Обозначения в таблице:
ПВ – пиковый вольтметр;
СВ – вольтметр с преобразователем средневыпрямленных значений;
КВ – вольтметр с преобразователем среднеквадратических значений;
О – вольтметр с открытым входом;
З – вольтметр с закрытым входом.
Таблица 3.2
M Uк, В Um, В k
1 3 1,5 0,3
Рисунок 3.1 (смотрите на скрине)
Задача No4
При измерении частоты генератора методом сравнения (рис. 4.1) к входу канала горизонтального отклонения (канала "X") осциллографа приложен гармонический сигнал от генератора образцовой частоты:
U_(X обр)=U_(m обр)∙sin(ω_обр∙t+ψ),
а к входу канала вертикального отклонения (канала "Y") – гармонический сигнал исследуемого генератора:
U_(Y иссл)=U_(m иссл)∙sin(ω_иссл∙t+φ)
где ω=2πƒ – круговая частота,
ƒ – циклическая частота,
ψ и φ – начальные фазовые углы образцового и исследуемого сигналов соответственно. Измерения проведены в нормальных условиях, границы относительной погрешности частоты образцового генератора δfобр определены с вероятностью P = 0,997.
Рисунок 4.1 (смотрите на скрине)
Задание.
1. Определить по заданным значениям частот сигналов ожидаемое отношение числа точек пересечений фигуры Лиссажу с горизонтальной секущей nг к числу точек пересечений фигуры Лиссажу с вертикальной секущей nв.
2. Построить фигуру Лиссажу, которую можно наблюдать на экране осциллографа при заданных значениях Um обр , ƒобр , Um иссл , ƒиссл , ψ и φ , считая коэффициенты отклонения каналов Y (ko.в) и X (ko.г) одинаковыми и равными 1 В/см .
3. Оценить абсолютную Δƒcр и относительную δƒcр погрешности сравнения частот исследуемого и образцового генераторов, вызванную изменением фигуры Лиссажу, если за время, равное Т секунд, она повторно воспроизводилась 5 раз.
4. Оценить границы абсолютной Δƒиссл и относительной δƒиссл погрешности измерения частоты исследуемого генератора, если известны границы относительной погрешности частоты образцового генератора δfобр .
5. Записать результат измерения частоты ƒиссл в соответствии с нормативными документами в двух вариантах: 1) с указанием границ абсолютной погрешности; 2) с указанием границ относительной погрешности.
Исходные данные для решения приведены в таблицах 4.1 и 4.2.
Таблица 4.1
M Um обр , В ƒобр , Гц φ, рад δ fобр , %
1 1,5 2800 0 0,25
Таблица 4.2
N Т, с ψ, рад ƒиссл, Гц Um иссл , В
2 16 π/2 1400 1,5
Список литературы
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонения (СКО) погрешности результата наблюдений (стандартную неопределенность единичного измерения) S;
3. Границы максимальной неопределенность случайной составляющей погрешности результата наблюдений Δ макс;
4. Оценку среднего квадратического отклонения погрешности случайной составляющей результата измерения (стандартную неопределенность результата измерения) S(l ̅);
5. Границы доверительного интервала (расширенную неопределенность) для результата измерения расстояния до места повреждения ε при заданной доверительной вероятности α ;
6. Записать результат измерения расстояния до места повреждения в соответствии с нормативными документами.
7. Систематическую составляющую погрешности измерения рефлектометра θ, если после обнаружения места повреждения было установлено. что действительное расстояние до него составляло l_∂ метров. Сравните ее с доверительным интервалом случайной составляющей погрешности результата измерения, и сделать вывод;
8.Предложить способ уменьшения оценки СКО случайной составляющей погрешности результата измерения в D раз.
Таблица.1.1 Исходные данные
M i l_∂ ,м D
1 5 – 10 272,3 2,1
Таблица 1.2 Исходные данные
N i α
2 60 – 68 0,98
Таблица 1.3 Результаты однократных измерений.
I l_i i l_i
5 275,81 60 274,63
6 273,50 61 275,30
7 276,65 62 275,23
8 275,81 63 275,52
9 273,28 64 276,03
10 275,30 65 276,56
66 273,75
67 274,76
68 274,24
Задача 2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн (рисунок 2.1). (Рисунок смотрите на скрине)
Мощность в нагрузке измеряют с помощью вольтметра V при нормальных условиях измерения. Показания прибора и его метрологические характеристики – условное обозначение класса точности и конечное значение шкалы прибора или диапазона измерения приведены в таблице 2.1. В таблице 2.2 приведены: метрологические характеристики измерительного генератора – числовое значение сопротивления Rг и его относительная погрешность δ Rг; сопротивления нагрузки – значения сопротивления Rн и его относительная погрешность δ Rн.
MN = 12
Таблица 2.1
M 1
Показание амперметра IA, мА 19
Класс точности амперметра % 2
Конечное значение шкалы амперметра или диапазон измерения, мА -50 ̧ 50
Таблица 2.2
N 2
Rг , Ом 75
Относительная погрешность, δ Rг, % 7,2
Rн, Ом 450
Относительная погрешность, δ Rн, % 3,5
Определить абсолютный уровень напряжения РE
Определить абсолютный уровень мощности Р∑
Необходимо определить:
1. Абсолютный уровень ЭДС генератора рE
2. Абсолютный уровень суммарной мощности, выделяемой на внутреннем сопротивлении генератора и сопротивлении нагрузки р∑.
3. Оценить границы абсолютной погрешности измерения абсолютных уровней напряжения и мощности, определенных в п.1 и п.2.
4. Оформить результаты измерения абсолютных уровней напряжения и мощности в соответствии с нормативными документами.
Задача No 3
На рисунке 3.1 показана осциллограмма периодического сигнала, который наблюдали на выходе исследуемого устройства.
Требуется найти:
Аналитическое описание исследуемого сигнала.
Пиковое (Um), среднее (Uср ), средневыпрямленное (Uср.в) и среднеквадратическое (U) значения напряжения выходного сигнала заданной формы.
Пиковое (U_m^~), среднее (U_cp^~), средневыпрямленное (U_(cp.в)^~) и среднеквадратическое (U^~) значения напряжения переменной составляющей заданного выходного сигнала.
Коэффициенты амплитуды (〖K_a,K〗_a^~), формы (〖K_ф,K〗_ф^~) и усреднения (〖K_y,K〗_y^~) всего исследуемого сигнала и его переменной составляющей.
Показания вольтметров с различными типами преобразователей с закрытым (З) или открытым (О) входом в соответствии с заданием, если вольтметры проградуированы в среднеквадратических значениях для гармонического сигнала.
Оценить предел допускаемой относительной погрешности (расширенной неопределенности) показаний вольтметров, определенных в 5 пункте задания, если используемые измерительные приборы имеют класс точности γ и конечное значение шкалы (предел измерения) Uк указанные в таблицах 3.1 и 3.2.
Оформить результаты измерений напряжения вольтметрами в соответствии с нормативными документами, если измерения проведены в нормальных условиях.
Таблица 3.1
N Рис. 3.1 Т, мкс τ, мкс Класс
точности γ Найти показания вольтметров
2 д 30 15 2 UV1 UV2 UV3 UV4
СВ, О ПВ, З КВ, З КВ, О
Обозначения в таблице:
ПВ – пиковый вольтметр;
СВ – вольтметр с преобразователем средневыпрямленных значений;
КВ – вольтметр с преобразователем среднеквадратических значений;
О – вольтметр с открытым входом;
З – вольтметр с закрытым входом.
Таблица 3.2
M Uк, В Um, В k
1 3 1,5 0,3
Рисунок 3.1 (смотрите на скрине)
Задача No4
При измерении частоты генератора методом сравнения (рис. 4.1) к входу канала горизонтального отклонения (канала "X") осциллографа приложен гармонический сигнал от генератора образцовой частоты:
U_(X обр)=U_(m обр)∙sin(ω_обр∙t+ψ),
а к входу канала вертикального отклонения (канала "Y") – гармонический сигнал исследуемого генератора:
U_(Y иссл)=U_(m иссл)∙sin(ω_иссл∙t+φ)
где ω=2πƒ – круговая частота,
ƒ – циклическая частота,
ψ и φ – начальные фазовые углы образцового и исследуемого сигналов соответственно. Измерения проведены в нормальных условиях, границы относительной погрешности частоты образцового генератора δfобр определены с вероятностью P = 0,997.
Рисунок 4.1 (смотрите на скрине)
Задание.
1. Определить по заданным значениям частот сигналов ожидаемое отношение числа точек пересечений фигуры Лиссажу с горизонтальной секущей nг к числу точек пересечений фигуры Лиссажу с вертикальной секущей nв.
2. Построить фигуру Лиссажу, которую можно наблюдать на экране осциллографа при заданных значениях Um обр , ƒобр , Um иссл , ƒиссл , ψ и φ , считая коэффициенты отклонения каналов Y (ko.в) и X (ko.г) одинаковыми и равными 1 В/см .
3. Оценить абсолютную Δƒcр и относительную δƒcр погрешности сравнения частот исследуемого и образцового генераторов, вызванную изменением фигуры Лиссажу, если за время, равное Т секунд, она повторно воспроизводилась 5 раз.
4. Оценить границы абсолютной Δƒиссл и относительной δƒиссл погрешности измерения частоты исследуемого генератора, если известны границы относительной погрешности частоты образцового генератора δfобр .
5. Записать результат измерения частоты ƒиссл в соответствии с нормативными документами в двух вариантах: 1) с указанием границ абсолютной погрешности; 2) с указанием границ относительной погрешности.
Исходные данные для решения приведены в таблицах 4.1 и 4.2.
Таблица 4.1
M Um обр , В ƒобр , Гц φ, рад δ fобр , %
1 1,5 2800 0 0,25
Таблица 4.2
N Т, с ψ, рад ƒиссл, Гц Um иссл , В
2 16 π/2 1400 1,5
Список литературы
Дополнительная информация
По данной работе получен зачет!
Похожие материалы
Контрольная работа по дисциплине: «Метрология, стандартизация и сертификация». Вариант №12.
teacher-sib
: 30 января 2018
Задача 1.
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонения (СКО)
450 руб.
Контрольная работа по дисциплине “Метрология, стандартизация и сертификация”. Вариант 12
tindrum
: 26 мая 2012
Вариант задания: последние цифры пароля 12 => M=1, N=2
Задача No1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
200 руб.
Контрольная работа по дисциплине: «Метрология, стандартизация и сертификация в инфокоммуникациях». Вариант №12
Колька
: 24 марта 2017
Задача No1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) по
150 руб.
Контрольная работа по дисциплине: Метрология, стандартизация и сертификация
BuKToP89
: 31 марта 2016
Задача № 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено (результатов единичных измерений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) погрешности результата наблюде
70 руб.
КОНТРОЛЬНАЯ РАБОТА по дисциплине «Метрология, стандартизация и сертификация»
catdog94
: 10 апреля 2015
Вариант No 08, это значит М=0 и N=8.
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n (результатов единичных измерений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, выполнить следующие задания.
1.Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднеквадратиче
250 руб.
Контрольная работа по дисциплине «Метрология, стандартизация и сертификация»
AlexAndros
: 4 ноября 2014
Вариант 98
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) по
200 руб.
Контрольная работа по дисциплине «Метрология,стандартизация и сертификация»
Dark
: 31 октября 2012
Задание №5 Нормативные документы по стандартизации и виды стандартов.
Задание №19 Маркировка продукции знаком соответствия государственным стандартам.
Задание №37 Комплексные системы общетехнических стандартов.
Задание №49 Для заданного сопряжения определить:
1. Номинальный размер отверстия и вала
2. Верхнее и нижнее отклонение отверстия и вала
3. Предельные размеры отверстия и вала
4. Допуск на размер отверстия разер вала
5. Предельные зазоры или натяги
6. Допуск посадки.Построить схему полей
150 руб.
Контрольная работа по дисциплине: Стандартизация и сертификация. Вариант №12
IT-STUDHELP
: 19 мая 2019
Вариант 12
ЧАСТЬ 1 АВТОМАТИЗАЦИЯ РАСЧЕТА ТЕХНИКО-ЭКОНОМИЧЕСКОГО
ОБОСНОВАНИЯ ПРОЕКТА
Цель работы: изучить структуру технико-экономического обоснования эффективности проекта по разработке автоматизированной информационной системы на основе сравнения с аналогом и автоматизировать процесс расчета ТЭО.
Задание
1. Выбрав инструментальную среду программирования, автоматизировать весь расчетный процесс технико-экономического обоснования, создав удобный пользовательский интерфейс, позволяющий проводить
900 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.