Лабораторная работа №2 по дисциплине: Дискретная математика. Вариант №6
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No2
Постановка задачи
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Входные данные программы и результаты
Описание основных переменных
Алгоритм решения задачи
Текст программы
Результат работы
Постановка задачи
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Входные данные программы и результаты
Описание основных переменных
Алгоритм решения задачи
Текст программы
Результат работы
Дополнительная информация
Зачет
В архиве отчет + программа.
Год сдачи - 2014
В архиве отчет + программа.
Год сдачи - 2014
Похожие материалы
Лабораторная работа №2. По дисциплине: Дискретная математика
Discursus
: 15 июня 2017
Задание
Написать программу, которая должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
151 руб.
Лабораторная работа № 2 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнят
48 руб.
Лабораторная работа №2 по дисциплине "Дискретная математика" 2 семестр 6 вариант
mastar
: 23 января 2012
Лабораторная работа No 2
Отношения и их свойства
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять п
125 руб.
Дискретная математика. Вариант № 6
najdac
: 15 октября 2021
Вариант 6
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (AB)(CD)=(AC)(BD).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношен
230 руб.
Дискретная математика. Вариант № 6
ejanin
: 29 июня 2018
Задание 1. Задано универсальное множество и множества
Задача 2.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора”.
Задача 3.
Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
Задача 4.
Орграф задан своей матрицей смежности. С
159 руб.
Лабораторная работа 2 По дисциплине: Дискретная математика Вариант 4
Nitros
: 28 июня 2025
Лабораторная работа No 2 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве
250 руб.
Лабораторная работа 2 по дисциплине: Дискретная математика. Вариант №13
IT-STUDHELP
: 23 ноября 2022
Лабораторная работа № 2
по дисциплине
«Дискретная математика»
Вариант 13
====================================
Задание 1. Решить задачу нахождения кратчайшего маршрута на взвешенном графе с помощью алгоритма Дейкстры.
Исходные данные: вершина х0 — начальная; вершина х7 — конечная.
Примечание:
* r[i,j] — элементы матрицы R длин рёбер (или дуг) данного графа G=(X, U). Значение r[i,j] равно длине ребра (дуги), соединяющего i-ю и j-ю вершины графа.
* Значения симметричных элементов получить самостоя
450 руб.
Лабораторная работа №2 по дисциплине: Дискретная математика. Вариант №21
IT-STUDHELP
: 30 декабря 2021
Задание 1
Решить задачу нахождения кратчайшего маршрута на взвешенном графе с помощью алгоритма Дейкстры.
Исходные данные: вершина х0 — начальная; вершина х7 — конечная
Задание 2
Решить задачу о коммивояжёре.
Исходные данные к задаче нахождения гамильтонова цикла в графе
Задание 3
Решить задачу нахождения максимального потока в транспортной сети с помощью алгоритма Форда—Фалкерсона.
Исходные данные:
Дана сеть S(X,U) x0 —исток сети; x7 — сток сети, где x0 X; x7 X.
Задание 4
Выполнить минимиз
400 руб.
Другие работы
Контрольная работа. Методы принятия управленческих решений.
studypro3
: 27 марта 2018
Контрольная работа (1 вариант)
I.Теоретическая часть (развернутый ответ на поставленные вопросы)
1. Решение как средство воздействия управляющей системы на управляемый объект.
2. История развития теории принятия решений.
3. Понятие качества управленческого решения как совокупность его свойств.
4. Логическая схема деятельности менеджера в процессе разработки решений.
5. Особенности индивидуального и группового принятия решений.
6. Целевая ориентация управленческих решений.
7. Методы решения ст
900 руб.
Дискретная математика. Лабораторные работы №№1-5. Все варианты
popye
: 15 февраля 2014
!СКИДКА! На все свои работы могу предложить скидку до 50%. Для получения скидки напишите мне письмо(выше ссылка "написать")
Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Отношения и их свойства
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных
80 руб.
Контрольная работа №1 по предмету " Приборы СВЧ и ОД "
oksana111
: 26 февраля 2014
Задача No 1
В двухрезонаторном клистронном усилителе, работавшем в оптимальном режиме, изменили один из параметров. Требуется определить, как надо изменить другой параметр, чтобы получить ту же выходную мощность или как при этом изменится режим усилителя.
n=2. Увеличили расстояние между резонаторами S до значения S(1+0,08m). Во сколько раз надо изменить расстояние между сетками первого резонатора, чтобы получить ту же мощность, если первоначально ?
Задача No2
Электроны, влетающие в замедляющую
50 руб.
Контрольная работа по дисциплине: Материалы и компоненты электронной техники. Вариант 34
xtrail
: 27 июля 2024
Задача 1.3.
Сопротивление вольфрамовой нити электрической лампочки при 20 гр.С составляет 35 Ом. Определить температуру нити лампочки, если известно, что при ее включении в сеть напряжением 220 В, в установившемся режиме по нити проходит ток 0,6 А, температурный коэффициент удельного сопротивления вольфрама при 20°С можно принять равным 0,005 К^(-1).
Задача 1.8.
Определить длину проволоки из нихрома марки Х20Н80 для намотки проволочного резистора с номиналом 1 кОм, и допустимой мощностью рассея
900 руб.