Лабораторная работа №3 по дисциплине: Дискретная математика. Вариант №6

Цена:
250 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Lab3.exe
material.view.file_icon Lab3.pas
material.view.file_icon res.txt
material.view.file_icon Отчет.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Лабораторная работа No3

Постановка задачи
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
1) Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.  
 3 5 2 6 4 1≥ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
2) Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.  
 В нашем примере это 2 и 4: 3 5 4 6 2 1≥ (это промежуточный набор).
3) После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор выдать его на печать.  
 3 5 4 1 2 6≥.
4) Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1.  После шага 3 было 3 5 4 1 2 6≥ выдать 3 5 4 1 6 2≥.  
 Если был набор 3 5 2 6 1 4≥ выдать 3 5 2 6 4 1≥.
5) Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Входные данные программы и результаты
Описание основных переменных
Алгоритм решения задачи
Текст программы
Результат работы

Дополнительная информация

Зачет
В архиве отчет + программа
Год сдачи - 2014
Лабораторная работа № 3 по дисциплине: Дискретная математика
Лабораторная работа No 3 Генерация перестановок Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры. Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), зате
User IT-STUDHELP : 29 января 2017
48 руб.
Лабораторная работа № 3 по дисциплине: Дискретная математика
Лабораторная работа №3 по дисциплине "Дискретная математика" 2 семестр 6 вариант
Лабораторная работа № 3 Генерация перестановок Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры. Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем –
User mastar : 23 января 2012
125 руб.
Дискретная математика. Вариант № 6
Вариант 6 No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (AB)(CD)=(AC)(BD). No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношен
User najdac : 15 октября 2021
230 руб.
Дискретная математика. Вариант № 6
Дискретная математика. Вариант № 6
Задание 1. Задано универсальное множество и множества Задача 2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение. “Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора”. Задача 3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему. Задача 4. Орграф задан своей матрицей смежности. С
User ejanin : 29 июня 2018
159 руб.
Лабораторная работа 3 По дисциплине: Дискретная математика Вариант 4
Лабораторная работа № 3 Поиск компонент связности графа Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности. Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3). Пользователю должна быть пред
User Nitros : 28 июня 2025
300 руб.
Лабораторная работа №3 по дисциплине: Дискретная математика. Вариант №10
Лабораторная работа №3 Дисциплина: Дискретная математика Вариант 10 СибГУТИ Работа № 3 Генерация перестановок Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры. Программа должна сначала упорядочить все элементы заданного множе
User poststud : 2 июля 2015
100 руб.
Лабораторная работа № 3 по дисциплине "Дискретная математика". Вариант №1
Тема: Генерация перестановок. Задание. Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом. Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры. Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать посл
User kanchert : 31 марта 2014
Лабораторная работа №3 по дисциплине "Дискретная математика". Вариант №5.
Генерация перестановок Задание. Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом. Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры. Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательн
User XsEt : 15 сентября 2013
20 руб.
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх