Лабораторная работа №3 по дисциплине: Дискретная математика. Вариант №6
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Лабораторная работа No3
Постановка задачи
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
1) Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
3 5 2 6 4 1≥ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
2) Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: 3 5 4 6 2 1≥ (это промежуточный набор).
3) После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор выдать его на печать.
3 5 4 1 2 6≥.
4) Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было 3 5 4 1 2 6≥ выдать 3 5 4 1 6 2≥.
Если был набор 3 5 2 6 1 4≥ выдать 3 5 2 6 4 1≥.
5) Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Входные данные программы и результаты
Описание основных переменных
Алгоритм решения задачи
Текст программы
Результат работы
Постановка задачи
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
1) Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
3 5 2 6 4 1≥ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
2) Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: 3 5 4 6 2 1≥ (это промежуточный набор).
3) После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор выдать его на печать.
3 5 4 1 2 6≥.
4) Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было 3 5 4 1 2 6≥ выдать 3 5 4 1 6 2≥.
Если был набор 3 5 2 6 1 4≥ выдать 3 5 2 6 4 1≥.
5) Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Входные данные программы и результаты
Описание основных переменных
Алгоритм решения задачи
Текст программы
Результат работы
Дополнительная информация
Зачет
В архиве отчет + программа
Год сдачи - 2014
В архиве отчет + программа
Год сдачи - 2014
Похожие материалы
Лабораторная работа № 3 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), зате
48 руб.
Лабораторная работа №3 по дисциплине "Дискретная математика" 2 семестр 6 вариант
mastar
: 23 января 2012
Лабораторная работа № 3
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем –
125 руб.
Дискретная математика. Вариант № 6
najdac
: 15 октября 2021
Вариант 6
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (AB)(CD)=(AC)(BD).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношен
230 руб.
Дискретная математика. Вариант № 6
ejanin
: 29 июня 2018
Задание 1. Задано универсальное множество и множества
Задача 2.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора”.
Задача 3.
Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
Задача 4.
Орграф задан своей матрицей смежности. С
159 руб.
Лабораторная работа 3 По дисциплине: Дискретная математика Вариант 4
Nitros
: 28 июня 2025
Лабораторная работа № 3 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть пред
300 руб.
Лабораторная работа №3 по дисциплине: Дискретная математика. Вариант №10
poststud
: 2 июля 2015
Лабораторная работа №3 Дисциплина: Дискретная математика Вариант 10 СибГУТИ
Работа № 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множе
100 руб.
Лабораторная работа № 3 по дисциплине "Дискретная математика". Вариант №1
kanchert
: 31 марта 2014
Тема: Генерация перестановок.
Задание.
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом. Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать посл
Лабораторная работа №3 по дисциплине "Дискретная математика". Вариант №5.
XsEt
: 15 сентября 2013
Генерация перестановок
Задание. Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом. Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательн
20 руб.
Другие работы
Штанговый центратор оборудования ШВН-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 7 июня 2016
Штанговый центратор оборудования ШВН-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
245 руб.
Курсовая работа. Расчет параметров коммутируемой сети. Вариант №1
xtrail
: 20 марта 2013
Содержание
Введение 3
Задание 1.Обоснование эффективности организации узлов на ГТС. 4
Задание 2. Разработка схемы сопряжения ТфОП с сеть СПС. 8
Задание 3. Разработка функциональной схемы передающих устройств каналов, сигналов управления и взаимодействия (СУВ). 9
Задание 4.Расчет числа звеньев сигнализации ОКС№7. 11
Задание 5.Синтез модулей цифровой коммутации. 13
Задание 5.1. 13
Задание 5.2. 14
Заключение 16
Список литературы 17
270 руб.
Кольцевой поршень-Деталь-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
nakonechnyy_lelya@mail.ru
: 26 сентября 2023
Кольцевой поршень-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
119 руб.
Организация текущего ремонта автомобилей в автотранспортном цехе ФГУП УАПО
Рики-Тики-Та
: 15 декабря 2015
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 6
1. АНАЛИЗ ПОКАЗАТЕЛЕЙ ПРОИЗВОДСТВЕННОЙ
ДЕЯТЕЛЬНОСТИ ФГУП УАПО 7
1.1 Общая характеристика предприятия и транспортного цеха 7
1.2 Производственно-техническая база ФГУП УАПО 10
1.3 Организация текущего ремонта автомобилей 12
2. ОРГАНИЗАЦИЯ ТЕКУЩЕГО РЕМОНТА АВТОМОБИЛЕЙ В АВТОТРАНСПОРТНОМ ЦЕХЕ
ФГУП УАПО 19
2.1 Обоснование производственной программы
участка по ремонту автомобилей 19
2.2 Выбор режима работы зон и участков и расчёт фондов времени 23
2.3 Расчет штата производств
825 руб.