Контрольная работа по дисциплине: Дискретная математика. Вариант №7 (2-й семестр)
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм
Эйлера-Венна.
а) (A\C) (B\C) = (AB)\C
б) (A\B)C=(AC)\(BC)
Задача 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)^(–1). Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(b,3),(b,1),(b,4),(c,3),(c,2)}; P2 = {(1,3),(1,4),(2,2),(3,3),(4,3),(4,4)}.
Задача 3
Задано бинарное отношение P R^2; найти его область определения и область значений. Проверить по определению, является ли P рефлексивным, симметричным, антисимметричным, транзитивным., P = {(x,y) | x^2 + y^2 = 4}.
Задача 4
Доказать утверждение методом математической индукции (см. скрин): для n >= 2.
Задача 5
Восемь студентов должны сдавать зачет по пяти предметам: физике, архитектуре ЭВМ, математическому анализу, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы.
Сколькими способами это можно сделать?
Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
Задача 6
Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 5, 6, 16? б) делящихся ровно на одно из этих трех чисел?
Задача 7
Найти коэффициенты при a=x^4•y•z^3, b=x•y^4•z, c=y^2•z^4 в разложении (3•x^2+5•y+2•z)^6.
Задача 8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 3•an+2 – 8•an+1 + 5•an = 0• и начальным условиям a1=10, a2=20.
Задача 9
Орграф задан матрицей смежности (см. скрин). Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача 10
Взвешенный граф задан матрицей длин дуг (см. скрин). Нарисовать граф. Найти:
а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v3 до остальных вершин графа, используя алгоритм Дейкстры.
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм
Эйлера-Венна.
а) (A\C) (B\C) = (AB)\C
б) (A\B)C=(AC)\(BC)
Задача 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)^(–1). Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(b,3),(b,1),(b,4),(c,3),(c,2)}; P2 = {(1,3),(1,4),(2,2),(3,3),(4,3),(4,4)}.
Задача 3
Задано бинарное отношение P R^2; найти его область определения и область значений. Проверить по определению, является ли P рефлексивным, симметричным, антисимметричным, транзитивным., P = {(x,y) | x^2 + y^2 = 4}.
Задача 4
Доказать утверждение методом математической индукции (см. скрин): для n >= 2.
Задача 5
Восемь студентов должны сдавать зачет по пяти предметам: физике, архитектуре ЭВМ, математическому анализу, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы.
Сколькими способами это можно сделать?
Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
Задача 6
Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 5, 6, 16? б) делящихся ровно на одно из этих трех чисел?
Задача 7
Найти коэффициенты при a=x^4•y•z^3, b=x•y^4•z, c=y^2•z^4 в разложении (3•x^2+5•y+2•z)^6.
Задача 8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 3•an+2 – 8•an+1 + 5•an = 0• и начальным условиям a1=10, a2=20.
Задача 9
Орграф задан матрицей смежности (см. скрин). Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача 10
Взвешенный граф задан матрицей длин дуг (см. скрин). Нарисовать граф. Найти:
а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v3 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Оценка - отлично!
Преподаватель: Бах О.А.
Преподаватель: Бах О.А.
Похожие материалы
Контрольная работа №1 по дисциплине: Дискретная математика. Вариант 7. (3-й семестр)
Jack
: 30 марта 2013
Задача №1: Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Задача №2: Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
Задача №3: Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ по
130 руб.
Контрольная работа по дисциплине: «Дискретная математика». Вариант №7
stepanewsd
: 21 декабря 2015
ЗАДАЧА No1.
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {10, 11, 12, 13, 14}
A = {10, 11, 12}
B = {12, 13, 14}
C = {10, 14}
D = {12}
а) A∩C ̅; б) (B∪A)/C ̅; в) (B∪D) ̅; г) (A ̅∩C ̅ ) ̅; д) ((U/(B∩C)))/D.
ЗАДАЧА No2.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
7. “Если А знаком с Б, и Б знаком с В, то либо А
250 руб.
Контрольная работа по дисциплине "Дискретная математика". Вариант №7.
mirsan
: 15 января 2015
Задание №1. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Задание №2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
Задание №3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ п
95 руб.
Дискретная математика. Контрольная работа. 3-й семестр. Вариант №7
yana1988
: 26 января 2014
Задание I
Задано универсальное множество U={10,11,12,13,14} и множества A={10,11,12};B={12,13,14};C={10,14};D={12}.
Задание II
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
Задание III
Для булевой функции найти методом преобразования минимальную ДНФ.
Задание IV
Орграф задан своей матрицей смежности:
Следует:
а) нарисовать орграф;
б) найти полустепени и степени вершин;
в) записать матрицу инцидентности.
50 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2 (2-й семестр)
Amor
: 3 июня 2014
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (AB) \ (AC) = (AB) \C б) (AB)C=(AC)(BC) .
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлекс
550 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №3 (2-й семестр)
xtrail
: 9 февраля 2014
Вариант 3
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (A\C) = A \ (BC) б) A(B\C)=(AB)\(AC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
850 руб.
Контрольная работа №1по дисциплине: Дискретная математика. Вариант №7
SybNet
: 22 сентября 2012
Контрольная работа №1 по Дискретной математике, 3 семестр, вариант №07
Дистанционное обучение СибГУТИ
Задача №1: Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Задача №2: Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
Задача №3: Для булевой функции най
100 руб.
Контрольная работа по дисциплине «Дискретная математика» 3-й семестр. 6-й вариант
Pomaqwert
: 26 февраля 2015
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а) – д) и каждое проиллюстрировать с помощью диаграммы Эйлера-Венна.
150 руб.
Другие работы
Технологическая карта на кирпичную кладку наружных и внутренних стен первого этажа двухэтажного общественного здания
GnobYTEL
: 19 февраля 2012
Содержание.
1. Исходные данные
2. Область применения
3. Назначение технологической карты
4. Ведомость объёмов работ
5. Описание способов производства работ
6. Выбор монтажного крана
6.1. Подбор грузозахватных приспособлений
6.2. Определение требуемых параметров крана
6.3. Определение рабочих параметров крана
6.4. Технико-экономическое сравнение кранов
7. Ведомость потребных материалов
8. Допускаемые отклонения
9. Указания по контролю качества
10.Техника безопасности
11. Калькуляция трудовых
44 руб.
Инженерная графика. Задание №64. Вариант №20. Задача №4. Корпус
Чертежи
: 19 апреля 2021
Все выполнено в программе КОМПАС 3D v16.
Боголюбов С.К. Индивидуальные задания по курсу черчения.
Задание 64. Вариант 20. Задача 4. Корпус
В данной задаче необходимо выполнить ступенчатый разрез, заменив им один из видов, на котором он не указан.
В состав работы входят три файла:
- 3D модель детали;
- ассоциативный чертеж детали в двух видах с выполненным ступенчатым разрезом;
- аналогичный обычный чертеж.
*.rar - это разрешение файла семейства архивов. Все файлы данной работы помещены в ар
65 руб.
Облік виплат за закладені речі в ломбарді
Elfa254
: 5 октября 2013
ПІБ клієнта; найменування предмету (один клієнт може закласти кілька предметів); дату закладання; дату, до якої треба викупити товар (інакше предмет переходить у власність ломбарду); дату фактичного викупу (ставиться, коли клієнт повністю повернув позику); суму позики за предмет; відсоток на суму позики (клієнт повинен повернути позику + суму по відсотку); дату часткового повернення позики (клієнт може повертати суму позики частинами); суму часткового повернення.
Прикладна система повинна відпо
11 руб.
Цифровая обработка сигналов. Зачет. Билет №7. Вариант №1. СибГУТИ
filenet
: 18 апреля 2016
Апрель 2016 год. Зачет.
Исходные данные итогового задания зависят от:
Nгр- номера группы, в которой обучается студент (двузначное число),
Nпр - две последние цифры пароля студента (двузначное число).
1. Дано коэффициенты ОДПФ
2. Дано разностное уравнение дискретной цепи.
Изобразить каноническую схему дискретной цепи.
Записать передаточную функцию дискретной цепи.
Проверить устойчивость дискретной цепи.
3. Дана передаточная функция дискретной цепи.
Апрель 2016 год. Зачет.
300 руб.