Контрольная работа №2 по математическому анализу
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Контрольная работа 1 13.05.2013 15.05.2013 Зачет
Похожие материалы
Контрольная работа №2 по математическому анализу
Druzhba1356
: 22 сентября 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
40 руб.
Контрольная работа №2 по Математическому анализу.
Udacha2013
: 26 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с
230 руб.
Контрольная работа №2 по математическому анализу. Вариант №5
romaneniii
: 2 апреля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
100 руб.
Контрольная работа №2 по математическому анализу. 10-й вариант
Despite
: 21 января 2013
Задача No 1: Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a z=3x^2y^2+5y^2x A(1;1) a(2;1)
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).y^6=a^2(3y^2-x^2)(y^2+x^2)
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.z=0
z=4 y, x+y=4
Задача No 4:
150 руб.
Контрольная работа №2 (Математический анализ) В-6
banderas0876
: 6 мая 2015
Вариант 3.6
Задача 3
Найти пределы функций:
a) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
b) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
Т.к. , то
.
Из первого замечательного предела следует, что , т.е.
. Значит
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Контрольная работа №2. Специальные главы математического анализа
worknecro
: 9 сентября 2015
Задача 1.
Вычертить область плоскости по данным условиям:
Задача 2.
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
Задача 3.
При помощи вычетов вычислить данный интеграл по контуру.
150 руб.
Контрольная работа №2. Математический анализ. Вариант №01
DarkInq
: 19 февраля 2014
1. Вычертить область плоскости по данным условиям
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них
3. При помощи вычетов вычислить данный интеграл по контуру.
40 руб.
Другие работы
Курсовая работа по электротехнике 2 вариант
12mistress12
: 30 августа 2010
Техническое задание
1. Напряжение источника питания Е = +9В.
2. Коэффициент усиления по напряжению Кu = 6.
3. Входное сопротивление Rвх = 5,1 МОм.
4. Сопротивление нагрузки Rн = 1 кОм.
5. Номинальное выходное напряжение Uном = 1В.
6. Нижняя рабочая частота fн = 50 Гц
7. Верхняя рабочая частота fв = 10 кГц.
8. Коэффициент частотных искажений на нижней рабочей частоте Мн = 2дБ.
9. Коэффициент частотных искажений на нижней рабочей частоте Мн = 2дБ.
10. Тип входа – несимметричный,
200 руб.
Модернизация рабочего органа тракторного рыхлителя мерзлого грунта
Zarik555
: 22 октября 2011
Диплом с чертежами в AutoCAD2006 - 5 листов формата А1
Введение
В нашей стране на 90 % территории грунты промерзают в зимнее время и поэтому перед разработкой землеройными машинами их необходимо рыхлить. Существуют множество методов рыхления мерзлых грунтов, одним из наиболее эффективных средств механического разрушения грунтов являются навесные рыхлители. С 1990 года почти четверть объема грунта разрабатывается механическим способом бульдозерно-рыхлительными агрегатами.
В настоящее время наи
2000 руб.
Колено - рычажный пресс типа СМ143
Рики-Тики-Та
: 4 июня 2012
Содержание
1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ КОЛЕННО-РЫЧАЖНОГО ПРЕССА ТИПА СМ 143
2 СОСТАВЛЕНИЕ КИНЕМАТИЧЕСКОЙ СХЕМЫ (конструкторская часть)
3. Технологическая часть
Литература
Приложение
Для прессования большинства алюмосиликатных изделий в огнеупорной промышленности применяют колено- рычажные пресса. Эти прессы обеспечивают высокую производительность, просты в обслуживании, имеют сравнительно низкие эксплуатационные расходы.
Конструкция колено- рычажных прессов позволяет обеспечить в конце ци
1100 руб.
Основы алгоритмизации и программирования
AlexSat
: 30 мая 2009
Используя динамические списки разработать программу "электронная сваха" для службы знакомств.
Имеется два списка: список женихов и список невест. В каждом списке кандидат (жених или невеста) характеризуется записью вида
Содержание.
1. Постановка задачи 3
2. Способ решения