Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2))
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(2)+y^(2)=4
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l — контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(x+7z)k; 2x+y+z-4=0
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2))
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(2)+y^(2)=4
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l — контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(x+7z)k; 2x+y+z-4=0
Дополнительная информация
Оценка - отлично!
Год сдачи - 2014
Преподаватель: Агульник Ольга Николаевна
Год сдачи - 2014
Преподаватель: Агульник Ольга Николаевна
Похожие материалы
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Roma967
: 21 ноября 2014
Задача 1. Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функции.
f(x)=(x^(2)-1)/(x-2)
Задача 2. Найти неопределённые интегралы (см. скрин)
Задача 3. Вычислить площади областей, заключённых между линиями:
у = 4 - x^(2); y = 4х – 1
270 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
xtrail
: 31 января 2014
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
4x-3y+2z=9
2x+5y-3z=4
5x+6y-2z=18
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
200 руб.
Контрольная работа № 1по дисциплине: математический анализ. 1-й семестр
oksana111
: 21 февраля 2013
Задача 1. Найти пределы функций:
Вариант:3.2.
Задача 2. Найти значение производных данных функций в точке x=0:
Вариант:4.2
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Вариант:5.2
Задача 4. Найти неопределенные интегралы:
Вариант:6.2
Задача 5. Вычислить площади областей, заключённых между линиями:
Вариант: 7.2
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант № 3, 1-й семестр, 2-й курс
dus121
: 22 декабря 2011
Найти пределы функций LIM 2x2-x-4/x2-3x-2
Найти значение производных в точке х=0
Провести исследоване ф-ции х2-1/х-2
Найти неопределенные интегралы
20 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Roma967
: 26 февраля 2015
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
z = ln(3x2 +4y2); A (1;3), a (2;-1)
Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0).
y^6 = a^2∙(y^4 - x^4)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями.
z = 0, z = 1 – y^2, x =
450 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №9. 2-й семестр
sag
: 17 апреля 2014
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
70 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №7 (2-й семестр)
xtrail
: 25 января 2014
Задача 1. Даны функция z=z(x,y), точка A(x ;y ) и вектор a(a ;a ).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arcsin(x^(2)/y); A(1;2), a(5;-12)
Задача 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^4=a^2*(x^2-3y^2)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0; x^2+y^2=z; x^2+y^2=4
Задача
370 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант № 5 (2-й семестр)
bertone
: 3 января 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный
250 руб.
Другие работы
Компрессор аммиачный двухступенчатый ДАУ50
nakonechnyy.1992@list.ru
: 6 мая 2020
Компрессор аммиачный двухступенчатый ДАУ50-Детали машин-Деталировка-Сборочный чертеж-Чертежи-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Графическая часть-Оборудование-Машины и механизмы-Агрегаты-Установки-Комплексы-Узлы-Детали-Курсовая работа-Дипломная работа-Автомобили-Транспорт-Строительная техника-Электрооборудование-Грузоподъёмные механизмы-Железнодорожный транспорт
500 руб.
Основы проектирования и технической эксплуатации телекоммуникационных систем. Контрольная работа. Вариант 5
SibGUTI2
: 14 октября 2017
Задача1
Рассчитать показатели надежности проектируемой ВОЛП (волоконно-оптической линии передачи) .
Задача 2
Определить S1, S2 и BISO для Х ЦСТ и ОЦК при вводе в эксплуатацию. Тракт составной проходит по К участкам ВЗПС с длинами Li и СМП длиной L. N- номер варианта
Задача 3
Определить долговременные нормы для Х и Y организованные по ВЗПС длиной L1 и СМП протяженностью L2.
М – последняя цифра номера студенческого билета
120 руб.
ИГ.05.13.04 - Пластина. Разрез сложный ломаный
Чертежи СибГАУ им. Решетнева
: 4 ноября 2021
Все выполнено в программе КОМПАС 3D v16
Вариант 13
ИГ.05.13.04 - Пластина. Разрез сложный ломаный
1. Выполнить указанный ломаный разрез.
2. Нанести размеры.
В состав работы входят 4 файла:
- 3D модель данной детали, расширение файла *.m3d;
- ассоциативный чертеж формата А3 в двух видах с выполненным указанным ломаным разрезом, выполненный по данной 3D модели, расширение файла *.cdw;
- аналогичный обычный чертеж, расширение файла *.cdw (чертеж с пометкой "к" для карандашного перечерчивания);
-
80 руб.
Термодинамика и теплопередача ТюмГНГУ Техническая термодинамика Задача 1 Вариант 28
Z24
: 9 января 2026
Считая теплоемкость идеального газа зависящей от температуры, определить: параметры газа в начальном и конечном состояниях, изменение внутренней энергии, теплоту, участвующую в процессе и работу расширения.
Исходные данные, необходимые для решения задачи, выбрать из табл.2,1., зависимость величины теплоемкости от температуры приведена в приложении 1.
180 руб.