Контрольная работа. 7-й вариант. Теория вероятностей, математическая статистика и случайные процессы
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
ЗАДАНИЕ 1
Вероятность появления поломок на каждой из 5 соединительных линий равна 0,15. Какова вероятность того, что хотя бы две линии исправны?
ЗАДАНИЕ 2
В одной урне 4 белых шаров и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
ЗАДАНИЕ 3
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,8. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 4.
Вероятность появления поломок на каждой из 5 соединительных линий равна 0,15. Какова вероятность того, что хотя бы две линии исправны?
ЗАДАНИЕ 2
В одной урне 4 белых шаров и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
ЗАДАНИЕ 3
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,8. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 4.
Дополнительная информация
работа сдана без ошибок
оценка: зачёт
оценка: зачёт
Похожие материалы
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей и математическая статистика, и случайные процессы
style2off
: 12 января 2016
Задача 1.Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Задача2.В одной урне 5 белых шаров и 2 чёрных шара, а в другой – 4 белых и 4 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача3.В типографии имеется7печатных машин. Для каждой машины вероятность т
800 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Контрольная работа. Теория вероятностей математическая статистика и случайные процессы. Вариант №0
AlexBrookman
: 3 февраля 2019
Задача 1
Текст 1. Вероятность соединения при телефонном вызове равна 0,8. Какова вероятность, что соединение произойдёт только при 3 - ем вызове?
Задача 2
Текст 3. В одной урне 5 белых шаров и 6 чёрных шаров, а в другой – 6 белых и 8 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3
Текст 4. В типографии имеется 5 печатных ма
150 руб.
Теория вероятностей математическая статистика и случайные процессы. Контрольная работа. Вариант №5
sibguter
: 5 июня 2018
No1 Текст 2: Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
p=0.3, k=4
No2 Текст 3: В одной урне K(4) белых шаров и L(3) чёрных шаров, а в другой – M(5) белых и N(3) чёрных. Из первой урны случайным образом вынимают P(3) шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R(2) шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=4, L=3, M=5, N=3, P=3, R=2
49 руб.
Другие работы
Описание и принцип работы электрической принципиальной схемы станка 2Н125
свилкойвруке
: 20 января 2009
Описание и принцип работы
Электрооборудование станка включает в себя трёхфазный короткозамкнутый асинхронный электродвигатель вращения и рабочей подачи шпинделя , электронасос охлаждения , электроаппаратуру управления.
Электрическая принципиальная схема станка 2Н125 включает в себя:
1) Силовая цепь 60 Гц , 220, 380, 400 415, 440, 500В. (Напряжение силовой цепи определяется заказчиком)
2) Цепь управления 110В .
3) Цепь местного освещения 24В.
4) Цепь сигнализации 5В.
10 руб.
Моделирование телекоммуникационных систем. Вариант 33
steshenko
: 26 февраля 2018
Моделирование телекоммуникационных систем.
Задание на экзаменационный билет № 33:
Вопрос 1
Преимущества и недостатки языков имитационного моделирования.
В ответе описаны преимущества и недостатки.
Преимущества:
1) Время
2) Стоимость
3) Повторяемость
50 руб.
Цифровые устрйоства
Администратор
: 19 января 2008
Отличный учбеник по цифровой микроэлектронной технике
Политехника, 1996
djvu
Задача №1 по физике
anderwerty
: 23 ноября 2014
Между пластинами на расстоянии (-это не -расстояние между пластинами) плоского воздушного конденсатора установилась напряженность электрического поля конденсатора .
1. Определить напряжение , приложенное к выводам пластин конденсатора
2. Определить величину единичного заряда , на который в поле конденсатора действует сила .
3. Определить емкость конденсаторов ?
120 руб.