Математический анализ. 2-й семестр. 4-й вариант
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
Похожие материалы
Математический анализ. 2-й семестр. 4-й вариант
Antipenko2016
: 15 мая 2016
3.Вычислить криволинейный интеграл по координатам
2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
1.Вычислить несобственный интеграл или доказать его расходимость
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
100 руб.
Математический анализ. 1-й семестр. 10-й вариант
NataFka
: 14 октября 2013
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Рецензия:
существенных замечаний нет. Ваша работа зачтена.
100 руб.
Математический анализ. 1-й семестр, вариант №1.
Alexandr1305
: 26 февраля 2019
Вариант No 1
1 Найти пределы
а) б) в) .
2 Найти производные данных функций
а) б)
в) г) .
3 Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4 Дана функция . Найти все её частные производные второго порядка.
5 Найти неопределенные интегралы
а) б)
в) г) .
60 руб.
Математический анализ. 1-й семестр. Вариант №10
spectra
: 6 января 2014
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Варианты: (смотри некоторые на скриншотах)
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
Варианты:
2.1. А1 ( 1; -1; 2), А2 ( 1; 3; 0), А3 ( 3; 0; -2), А4 ( 5; -2; 1).
2.2. А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А
100 руб.
Математический анализ. 2-й семестр. Вариант 4
Vetalya90
: 12 февраля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатн
150 руб.
Математический анализ. 7-й вариант. СИБГУТИ. 2-й семестр
Anton16
: 7 января 2017
пять решенных заданий по МАТАН 7 вариант 2 семестр СИБГУТИ 2016. Все задания проверены преподавателем. оформлены правильно.
Дистанционное обучение
Дисциплина «Математический анализ». Часть 1
Вариант № 7
1. Найти пределы
а) б) г)
2. Найти производные данных функций
а) б)
в) г)
3. Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4. Дана функция . Найти все её частные производные второго порядка.
5.
250 руб.
Экзамен. Математический анализ. 15-й вариант.1-й семестр
Baaah
: 14 мая 2013
1. Несобственные интегралы: интегралы от разрывных функций.
2.Правило Лопиталя для раскрытия неопределенностей
3.Найти дифференциал функции f(x) , заданной неявно: y^x=x^y .
4.Исследовать и построить график функции y=1/(1-e^x)
5.Найти интеграл S(1/(x*(x^2+1))dx
6.Вычислить интеграл от 0 до -1 S(x^2*e^-x)dx
7.Исследовать сходимость интеграла от бесконечности до 2 - S(xdx/(x^2-1))
8.Найти площадь фигуры, ограниченной линиями y=3-x^2 и y=x^2+1
100 руб.
Математический анализ. Контрольная работа. 2-й семестр. 3-й вариант
SashaANG
: 5 ноября 2018
1) Вычислить несобственный интеграл или доказать его расходимость
2) Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3) Вычислить криволинейный интеграл по координатам
4) Найти общее решение дифференциального уравнения первого порядка
5) Решить задачу Коши
80 руб.
Другие работы
Курсовая работа по дисциплине «Проектирование средств технологического оснащения для технологических комплексов»
Илья145
: 6 ноября 2016
Проектирование установочно-зажимного приспособления
для фрезерно-центровальной операции
3000 руб.
Лабораторная работа №1 по дисциплине «Защита информации»
boeobq
: 9 декабря 2021
Тема: Шифры с открытым ключом
Задание:
1.Написать и отладить набор подпрограмм (функций), реализующих алгоритмы возведения в степень по модулю, вычисление наибольшего общего делителя, вычисление инверсии по модулю.
2. Используя написанные подпрограммы, реализовать систему Диффи-Хеллмана, шифры Шамира, Эль-Гамаля и RSA, в частности:
2.1. Для системы Диффи-Хеллмана с параметрами p = 30803, g = 2, XA = 1000, XB = 2000 вычислить открытые ключи и общий секретный ключ.
2.2. Для
50 руб.
Объектно-ориентированное программирование. КУРСОВОЙ ПРОЕКТ
Александр404
: 12 мая 2019
Вариант 2.
Написать программу, используя объектно-ориентированный подход. Тему выбираете самостоятельно. Описание классов желательно оформить в виде отдельного модуля. Иерархия классов должна включать минимум четыре класса, один из которых – абстрактный.
Язык и среда программирования – С#, Visual Studio 2017
Тема задания: Реализовать игру «крестики-нолики» в графическом режиме
400 руб.
Принцип математической индукции
Пазон
: 12 ноября 2008
СОДЕРЖАНИЕ
Введение. 3
§1. Основные понятия пи примеры теории упорядоченных множеств. 5
§2. Условия минимальности, индуктивности и обрыва убывающий цепей, их эквивалентность. 15
§3. Об условии минимальности в аксиоматической теории натуральных чисел. 20
§4. Аксиома выбора и ее роль для построения полного порядка на произвольном непустом множестве, теорема Цермело. 30
Литература. 40