Математический анализ. 2-й семестр. 4-й вариант

Цена:
75 руб.

Состав работы

material.view.file_icon FBF2352D-D539-4FF3-8045-E64828987BE8.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.

2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).

3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.

4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
Математический анализ. 2-й семестр. 4-й вариант
3.Вычислить криволинейный интеграл по координатам 2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями 1.Вычислить несобственный интеграл или доказать его расходимость 4.Найти общее решение дифференциального уравнения первого порядка 5.Решить задачу Коши
User Antipenko2016 : 15 мая 2016
100 руб.
Математический анализ. 1-й семестр. 10-й вариант
Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями: Рецензия: существенных замечаний нет. Ваша работа зачтена.
User NataFka : 14 октября 2013
100 руб.
Математический анализ. 1-й семестр, вариант №1.
Вариант No 1 1 Найти пределы а) б) в) . 2 Найти производные данных функций а) б) в) г) . 3 Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график. 4 Дана функция . Найти все её частные производные второго порядка. 5 Найти неопределенные интегралы а) б) в) г) .
User Alexandr1305 : 26 февраля 2019
60 руб.
Математический анализ. 1-й семестр. Вариант №10
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. Варианты: (смотри некоторые на скриншотах) Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти: длину ребра А1А2; угол между ребрами А1А2 и А1А4; площадь грани А1А2А3; уравнение плоскости А1А2А3. объём пирамиды А1А2А3А4. Варианты: 2.1. А1 ( 1; -1; 2), А2 ( 1; 3; 0), А3 ( 3; 0; -2), А4 ( 5; -2; 1). 2.2. А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А
User spectra : 6 января 2014
100 руб.
Математический анализ. 1-й семестр. Вариант №10
Математический анализ. 2-й семестр. Вариант 4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. A(1;1), a(2;-1) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатн
User Vetalya90 : 12 февраля 2012
150 руб.
Математический анализ. 7-й вариант. СИБГУТИ. 2-й семестр
пять решенных заданий по МАТАН 7 вариант 2 семестр СИБГУТИ 2016. Все задания проверены преподавателем. оформлены правильно. Дистанционное обучение Дисциплина «Математический анализ». Часть 1 Вариант № 7 1. Найти пределы а) б) г) 2. Найти производные данных функций а) б) в) г) 3. Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график. 4. Дана функция . Найти все её частные производные второго порядка. 5.
User Anton16 : 7 января 2017
250 руб.
Математический анализ. 7-й вариант. СИБГУТИ. 2-й семестр
Экзамен. Математический анализ. 15-й вариант.1-й семестр
1. Несобственные интегралы: интегралы от разрывных функций. 2.Правило Лопиталя для раскрытия неопределенностей 3.Найти дифференциал функции f(x) , заданной неявно: y^x=x^y . 4.Исследовать и построить график функции y=1/(1-e^x) 5.Найти интеграл S(1/(x*(x^2+1))dx 6.Вычислить интеграл от 0 до -1 S(x^2*e^-x)dx 7.Исследовать сходимость интеграла от бесконечности до 2 - S(xdx/(x^2-1)) 8.Найти площадь фигуры, ограниченной линиями y=3-x^2 и y=x^2+1
User Baaah : 14 мая 2013
100 руб.
Математический анализ. Контрольная работа. 2-й семестр. 3-й вариант
1) Вычислить несобственный интеграл или доказать его расходимость 2) Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями 3) Вычислить криволинейный интеграл по координатам 4) Найти общее решение дифференциального уравнения первого порядка 5) Решить задачу Коши
User SashaANG : 5 ноября 2018
80 руб.
Лабораторная работа №1 по дисциплине «Защита информации»
Тема: Шифры с открытым ключом Задание: 1.Написать и отладить набор подпрограмм (функций), реализующих алгоритмы возведения в степень по модулю, вычисление наибольшего общего делителя, вычисление инверсии по модулю. 2. Используя написанные подпрограммы, реализовать систему Диффи-Хеллмана, шифры Шамира, Эль-Гамаля и RSA, в частности: 2.1. Для системы Диффи-Хеллмана с параметрами p = 30803, g = 2, XA = 1000, XB = 2000 вычислить открытые ключи и общий секретный ключ. 2.2. Для
User boeobq : 9 декабря 2021
50 руб.
Объектно-ориентированное программирование. КУРСОВОЙ ПРОЕКТ
Вариант 2. Написать программу, используя объектно-ориентированный подход. Тему выбираете самостоятельно. Описание классов желательно оформить в виде отдельного модуля. Иерархия классов должна включать минимум четыре класса, один из которых – абстрактный. Язык и среда программирования – С#, Visual Studio 2017 Тема задания: Реализовать игру «крестики-нолики» в графическом режиме
User Александр404 : 12 мая 2019
400 руб.
Объектно-ориентированное программирование. КУРСОВОЙ ПРОЕКТ
Принцип математической индукции
СОДЕРЖАНИЕ Введение. 3 §1. Основные понятия пи примеры теории упорядоченных множеств. 5 §2. Условия минимальности, индуктивности и обрыва убывающий цепей, их эквивалентность. 15 §3. Об условии минимальности в аксиоматической теории натуральных чисел. 20 §4. Аксиома выбора и ее роль для построения полного порядка на произвольном непустом множестве, теорема Цермело. 30 Литература. 40
User Пазон : 12 ноября 2008
up Наверх