Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
0 0 1 0 5
0 0 10 6 7
1 10 0 12 4
0 6 12 0 3
5 7 4 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 10 28 23
2 14 40
3 8 22
0 0 1 0 5
0 0 10 6 7
1 10 0 12 4
0 6 12 0 3
5 7 4 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 10 28 23
2 14 40
3 8 22
Дополнительная информация
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Галкина М.Ю.
Вид работы: Экзамен
Оценка:Отлично
Галкина М.Ю.
Похожие материалы
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
nik200511
: 27 мая 2019
Билет №4
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
348 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
zhekaersh
: 6 марта 2015
Билет №4
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
40 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
nik200511
: 7 июля 2014
Билет №4
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
46 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
IT-STUDHELP
: 20 апреля 2023
Билет №4
1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
380 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложности вычислительных процессов и структур. Экзаменационная работа. Билет 4.
Bodibilder
: 29 мая 2019
Билет №4
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
30 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Другие работы
Контрольная работа по дисциплине «Физика (часть 2-я)» Вариант №3 (2022 г.)
LiVolk
: 6 марта 2022
Задача № 1
Вертикально-расположенная мыльная пленка образует клин, угол которого составляет 25 секунд (25"). В отражённом свете наблюдаются полосы равной толщины. Длина волны монохроматического света равна 650 нм, что соответствует красному цвету. Показатель преломления пленки n = 1,33. Сколько красных полос наблюдается на участке длиной 1 см. Свет на поверхность клина падает нормально. Изобразите ход лучей в клине, рисунком поясните, какие лучи интерферируют в этом случае
Задача № 2
Расстояние
150 руб.
Філософія України другої половини ХІХ - поч. ХХ ст
Slolka
: 16 ноября 2013
1. Основні філософські ідеї П. Юркевича
ХХ ст. характеризується тенденцiєю до формування нової парадигми свiтосприйняття. Вiдбувається перегляд усталених пiдходiв i оцiнок, утверджується дiалогiчне, плюралiстичне розумiння iсторико-фiлософського процесу. В iсторико-фiлософськiй науцi зменшується кількість “бiлих плям”, оскiльки стало зрозумiлим, що замовчування певних постатей або явищ, так само як i применшення їх ролi, веде до збiднення фiлософської думки, до звуження масштабiв мислення.
Творч
10 руб.
Штамп для гибки. Вариант 30 ЧЕРТЕЖ
coolns
: 10 октября 2023
Штамп для гибки. Вариант 30
Для работы предлагается штамп, который применяется для изготовления прутков определенной формы путем их изгибания. Схема принципиальная полная штампа показана на рис.5.219.
Заготовка, которая изгибается с помощью штампа, рассматривается как пограничная деталь и поэтому условно изображается тонкой линией.
На схеме изделие показано в рабочей момент, когда выполнен изгиб заготовки.
Штамп состоит из основания (нижней плиты) 1, на котором крепится матрица 2 винтами 15 с ц
800 руб.
Дискретная математика (2-й семестр). Лабораторная работа №3. Без варианта
Aftalick
: 15 октября 2014
Задание. Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕ
45 руб.