Дискретная математика. Лабораторная работа № 2. Вариант 18. СибГУТИ
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Отношения и их свойства
Бинарное отношение R на конечном множестве A: R принадлежит A2 – задано списком упорядоченных пар вида (a,b), где a,b принадлежат A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Бинарное отношение R на конечном множестве A: R принадлежит A2 – задано списком упорядоченных пар вида (a,b), где a,b принадлежат A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Дополнительная информация
Программа написана самостоятельно и не содержит багов (полностью отлаженный и работающий вариант). Описание работы содержит информацию о ходе написания программы, её тестирования и работы.
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 2
Оценка:Зачет
Дата оценки: 01.02.2013
Рецензия:Уважаемая +++++++++++
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 2
Оценка:Зачет
Дата оценки: 01.02.2013
Рецензия:Уважаемая +++++++++++
Похожие материалы
Лабораторная работа №2. Дискретная математика. (СибГУТИ)
Lost
: 15 февраля 2012
Отношения и их свойства
Бинарное отношение R на конечном множестве A задано списком упорядоченных пар вида (a,b), где a,b из A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения,
70 руб.
Дискретная математика. Контрольная работа. Вариант 18. СибГУТИ
Shamrock
: 2 февраля 2015
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\\ ((AB)\\C) = (A\\B) (A C)
б) U2 \\ (C D) = (U (U\\D)) ((U\\C) U).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, являет
250 руб.
Дискретная математика. Лабораторная работа № 1. Вариант 18. СибГУТИ
Shamrock
: 2 февраля 2015
(Деление на варианты не предусмотрено)
Множества и операции над ними
Задание:
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После вв
220 руб.
Дискретная математика. Лабораторная работа № 5. Вариант №18. СибГУТИ
Shamrock
: 2 февраля 2015
(Разбиение на варианты не предусмотрено)
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю
220 руб.
Дискретная математика. Лабораторная работа № 4. Вариант №18. СибГУТИ
Shamrock
: 2 февраля 2015
(Разделение на варианты не предусмотрено)
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Г
220 руб.
Дискретная математика. Лабораторная работа № 3. Вариант №18. СибГУТИ
Shamrock
: 2 февраля 2015
(Разделение на варианты не предусмотрено)
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный
220 руб.
СИБГУТИ, Дискретная математика
fred_student
: 2 октября 2014
В данном сборнике решения следующих лабораторных работ:
1. Множества и операции над ними
2. Отношения и их свойства
3. Генерация перестановок
4. Генерация подмножеств
5. Поиск компонент связности графа
Все работы написаны на языке Pascal.
500 руб.
Дискретная математика. Лабораторная работа № 2
svladislav987
: 16 апреля 2021
Поставленная задача:
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить постро
200 руб.
Другие работы
Зачетная работа по дисциплине: Сети радиодоступа (часть 1). Билет №73
SibGOODy
: 24 августа 2024
Билет №73 к зачету по дисциплине "Сети радиодоступа"
9. Структурная схема базовой станции и назначение её элементов.
18. Принцип действия каскадных кодов.
350 руб.
Применение компьютерных технологий в процессе работы предприятия
Elfa254
: 9 октября 2013
ВВЕДЕНИЕ
Быкова Кристина Андреевна, буду проходить производственную практику по получению первичных профессиональных навыков на Информационном Центре УВД по Забайкальскому краю. За время прохождения практики я должна ознакомится с деятельностью предприятия, основными информационными системами, закрепить теоретические знания по всем вопросам разработки программного продукта, собрать материал, составить отчет и заверить подписью руководителя практики от предприятия и печатью.
Передо мной стоят з
20 руб.
Математика.Задача № 11-25-2
Григорий12
: 21 мая 2014
2. Найдите общее решение или общий интеграл дифференциального уравнения, решите задачу Коши для заданных начальных условий.
y'tg(x)-y=1;
y=-1/2;
x=pi/6;
80 руб.