Дискретная математика Вариант №4, 1 семестр, СибГУТИ
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1) Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна:
2) Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня».
3) Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
4) Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти полустепени и степени вершины;
в) записать матрицу инцидентности.
Подробное описание на картинке, прикрепленной к работе.
2) Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня».
3) Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
4) Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти полустепени и степени вершины;
в) записать матрицу инцидентности.
Подробное описание на картинке, прикрепленной к работе.
Дополнительная информация
Оценка:Зачет
Дата оценки: 27.01.2015
Мурзина Татьяна Степановна
Дата оценки: 27.01.2015
Мурзина Татьяна Степановна
Похожие материалы
Дискретная математика вариант 4
BOND
: 10 октября 2009
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
100 руб.
Экзамен по дисциплине: Дискретная математика. Вариант №4
Norff
: 16 января 2021
Билет No 12
Факультет ИВТ (ДО) Курс 1 Семестр 2
Дисциплина Дискретная математика
1) Размещения и сочетания с повторениями – дать определение, охарактеризовать общие черты и различия; привести формулы для расчета числа вариантов. Привести примеры.
2) Виды графов – пустой, полный, двудольный, сети. Определить и проиллюстрировать операцию стягивания ребер в графе.
3) Используя принцип математической индукции, доказать утверждение: (n3 + 11·n) кратно 6 для всех целых n 2.
4) Найти упрощенн
30 руб.
Контрольная работа. Дискретная математика. Вариант 4.
Philius
: 8 мая 2017
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
50 руб.
Контрольная работа по Дискретной математике. Вариант №4
pbv
: 10 ноября 2013
Задача No1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (C\B) = (A C) \ B б) A (B C)=(A B) (A C).
Задача No2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является л
70 руб.
Контрольная работа по дисциплине: Дискретная математика Вариант 4
IT-STUDHELP
: 4 ноября 2022
Вариант 04
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (C\B) = (A C) \ B б) A (B C)=(A B) (A C).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли о
600 руб.
Контрольная работа по дисциплине: дискретная математика. Вариант 4
nlv
: 15 сентября 2018
I. Задано универсальное множество U и множества A, B, C и D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По
60 руб.
Контрольная работа по дисциплине ''Дискретная математика". Вариант №4
hikkanote
: 6 апреля 2017
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
4. U={2,4,6,8,10}
A={2,4};
B={4,6,8};
C={2,6,10};
D={4}.
а)A∩D ̅={2}
б)(A∪C) ̅={8}
в)(B∖C)∩D={4}
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
4. “Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой
250 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна. (см. скрин)
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКН
500 руб.
Другие работы
Теоретические аспекты изучения проблемы организации физкультурно-оздоровительной работы с детьми
Elfa254
: 3 сентября 2015
Введение.
Теоретические аспекты изучения проблемы организации физкультурно-оздоровительной работы с детьми.
Обзор литературы по физической подготовленности школьников.
Особенности двигательной активности в младшем школьном возрасте.
Практика организации массовой физкультурно-оздоровительной работы с детьми в начальной школе.
Организация физкультурно-оздоровительной, спортивно-массовой работы в школе.
Формы физкультурно-оздоровительной работы с детьми в начальной школе.
Заключение.
Список литерат
45 руб.
Православие и самоидентификация России в XXI веке
Qiwir
: 8 августа 2013
Проблема идентичности на индивидуальном уровне выступает как проблема отождествления, идентификации двух сторон личности: «я» и самости, взаимодействие между которыми складывается отнюдь не просто. Однако здоровый человек все же не утрачивает связь со своей самостью – субъективностью и телом. Патология же связана с рассогласованием между индивидуумом и его самостью. Тело шизофреника – есть тело чемодан, его содержание определяется внешней средой, с которой он взаимодействует. Это связано с тем,
15 руб.
Проектирование привода с двухступенчатым редуктором
Адын
: 8 июня 2009
Вся курсовая - пояснительная записка, все чертежи(вал, колесо, сборочный, приводная станция), спецификации.Выбор электродвигателя Расчет цепной передачи Предварительный расчет валов Расчет цепной передачи Проверка долговечности подшипника Проверка шпоночных соединений Уточненый расчет валов Выбор смазочных материалов Преподователи: Чертовских, Федоров. 2009г
Метрология, стандартизация и сертификация, Контрольная работа, Вариант 06
Devide
: 12 декабря 2011
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонения (СКО
100 руб.