Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №2

Состав работы

material.view.file_icon
material.view.file_icon matr.txt
material.view.file_icon tsvp_lab3.exe
material.view.file_icon лр3.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана

Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.

Номер варианта выбирается по последней цифре.

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 3
Оценка:Зачет
Дата оценки: 24.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №2
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по посл
User bvv1975 : 17 марта 2014
10 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №2
Лабораторная работа № 3 по курсу: “Теория сложностей вычислительных процессов и структур”. Вариант № 2.
Номер варианта: 2. Задание на лабораторную работу: “Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана”. Условие задачи: Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующ
User Doctor_Che : 9 февраля 2012
35 руб.
Лабораторная работа № 3 по курсу: “Теория сложностей вычислительных процессов и структур”.
Номер варианта: 2. Задание на лабораторную работу: “Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана”. Условие задачи: Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующ
User mamontynok : 28 января 2014
34 руб.
Лабораторная работа № 3 по дисциплине "Теория сложностей вычислительных процессов и структур"
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по посл
User 1231233 : 31 января 2012
23 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по по
User zhekaersh : 2 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
Теория сложностей вычислительных процессов и структур, лабораторная работа № 3, вариант № 3
Постановка задачи Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 3 Вершина 2.
User alexxxxxxxela : 5 сентября 2014
180 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по посл
User wchg : 15 октября 2013
79 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
Онлайн тестирование по дисциплине "Антенны и распространение радиоволн". Вариант общий
Вопрос No1 Замена ненаправленной антенны, направленной позволяет увеличить: КПДантенны мощность излучения антенны напряженность поля антенны в точке приема в соотношении квадратного корня от КНД напряженность поля антенны в точке приема пропорционально величине КНД Вопрос No2 Поляризационные потери в ионосфере наблюдаются из-за ... наличия в ионосфере большого количества свободных заряженных частиц (ионов) влияния магнитного поля Земли искривления траектории волны в ионосфере наличия то
User teacher-sib : 1 сентября 2021
500 руб.
Онлайн тестирование по дисциплине "Антенны и распространение радиоволн". Вариант общий promo
Курсовая работа по дисциплине: Человеко-машинное взаимодействие. Вариант №7
Содержание Задание 3 Введение 4 1. Проблемно-центрированный подход 5 1. Анализ задач и пользователей 5 1.1.1 Анализ задач 5 1.1.2 Анализ пользователей 5 1.2. Выбор репрезентативных задач 5 1.3. Заимствование 7 1.4. Черновое описание дизайна 18 2. CWT-анализ разработанного интерфейса 20 3. GOMS анализ разработанного интерфейса 24 4. По результатам CWT и GOMS анализа доработать интерфейс программы и выполнить создание макета или прототипа. Провести анализ соответствия программы правилам Нильсена–М
User Roma967 : 27 февраля 2016
1000 руб.
promo
Основы теплотехники МИИТ 2012 Задача 1.4 Вариант 2
Определить основные параметры рабочего тела в переходных точках идеального цикла поршневого двигателя внутреннего сгорания со смешанным подводом теплоты, степень сжатия, термический КПД и полезную работу. Заданы характеристики цикла λ и ρ. В начальной точке цикла р1=0,1 МПа и t1=67 ºC. Температура в конце адиабатного процесса сжатия рабочего тела равна 600 ºС. Рабочее тело — 1 кг сухого воздуха. Изобразить цикл в рυ и Ts-координатах.
User Z24 : 12 декабря 2025
200 руб.
Основы теплотехники МИИТ 2012 Задача 1.4 Вариант 2
Гидравлика Задача 9.185
С целью опытного определения эквивалентной шероховатости стального трубопровода диаметром d = 0,10 м была измерена потеря напора на участке длиной l = 9,4 м. При перекачке по трубопроводу расхода Q = 7,85×10-2 м³/с воды потеря напора на указанном участке оказалась равной hтр = 7,8 м. Вычислить эквивалентную шероховатость kэкв.
User Z24 : 15 января 2026
150 руб.
Гидравлика Задача 9.185
up Наверх