Математический анализ. Контрольная работа №2. 2-й семестр. Вариант № 8
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n; 2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n; 3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n; 2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n; 3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Контрольная работа решена полностью правильно. Зачёт получен с первого раза. Все задачи сопровождаются необходимым описанием.
Преподаватель: Агульник Ольга Николаевна
Преподаватель: Агульник Ольга Николаевна
Похожие материалы
Математический анализ. Контрольная работа за 2-й семестр. Вариант № 8
Kasser
: 7 декабря 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями обр
100 руб.
Математический анализ (часть 2-я) Контрольная работа. 2-й семестр
Uiktor
: 26 марта 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
189 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант №10
NataFka
: 17 ноября 2013
Вариант 10
Задача No 1
Даны функция , точка А(х0;у0) и вектор а(ах;ау).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора а
; A(1;1), а(2;1)
Задача No 2
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Задача No 3 .
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Задача 4.
Даны векторное поле F=Xi+Yj+Zk и пло
100 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант № 4
Alexis87
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: а) grad z в точке А. б) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, z=y2, x2+y2=9
4. Исследовать сходимость числового ряда
5. Найти интервал сходимост
150 руб.
Контрольная работа. Математический анализ (2-й семестр).
s-kim
: 9 февраля 2013
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда.
6. Вычислить определенный
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Roma967
: 26 февраля 2015
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
z = ln(3x2 +4y2); A (1;3), a (2;-1)
Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0).
y^6 = a^2∙(y^4 - x^4)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями.
z = 0, z = 1 – y^2, x =
450 руб.
Контрольная работа по дисциплине: Математический анализ (2-й семестр). Вариант № 8
verunchik
: 7 июля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
300 руб.
Математический анализ. Контрольная работа. 2-й семестр. 3-й вариант
SashaANG
: 5 ноября 2018
1) Вычислить несобственный интеграл или доказать его расходимость
2) Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3) Вычислить криволинейный интеграл по координатам
4) Найти общее решение дифференциального уравнения первого порядка
5) Решить задачу Коши
80 руб.
Другие работы
Лабораторная работа № 2.2 Поверка аналогового измерительного прибора. Вариант 27
Помощь студентам СибГУТИ ДО
: 12 ноября 2017
Проведение многократных наблюдений аналоговым вольтметром для определения зависимости погрешности (неопределенности) вольтметра от его показаний .
Проводим многократные наблюдений аналоговым вольтметром для определения зависимости погрешности вольтметра от его показаний.
Исследование проводится для трех значений напряжения в трех точках шкалы:
U1 = 3 В; U2 = 7 В; U3 = 9 В;
Частота: f = 80 Гц.
Число наблюдений: n =6
Доверительный интервал измерений: Рдов=0,98
Предел измерения напряже
350 руб.
Расчет технологии производства работ нулевого цикла для общественного здания
Aronitue9
: 7 сентября 2012
В данном курсовом проекте разработана технология производства работ нулевого цикла для общественного здания. Здание запроектировано с фундаментом ленточного типа сборном исполнении и со свайным фундаментом в сборном монолитного изготов-ления,
глубина заложения – 1,9 м,
дальность возки грунта 3 км.
Условия строительства полевые;
Тип грунта супесь;
Уровень гр. вод-0.8
Производство работ нулевого цикла заканчивается раскладкой плит перекрытия
В данном проекте произведен расчет следую
42 руб.
Лабораторная работа № 5. Тема: Базы данных По дисциплине: «Основы визуального программирования» Вариант:__8
Dusya
: 1 марта 2012
ЗАДАНИЕ 1: Динамическое изменение SQL-запросов.
ЗАДАНИЕ 2: Связывание и объединение таблиц (таблицы Orders.db и Items.db из базы данных, имеющей псевдоним DBDEMOS, связываются и объединяются по полю OrderNo).
350 руб.
Сборочный чертеж калибра пробки
GAGARIN
: 18 февраля 2012
Пробка 8133-0926 ГОСТ 14810-69
1. Крепление вставок и насадок к ручкам не должно вызывать изменение размеров и формы рабочих поверхностей.
2. Покрытие металлических ручек- Хим.Окс.прм по ГОСТ 9791-68
3. Радиус скругления r=2мм.
4. Дефекты на рабочих поверхностях не допускаются.
Чертеж выполнен с помощью программы КОМПАС 3D
С соблюдением всех требований ГОСТ
Чертеж выполнен очень качественно без ошибок
готово к распечатке!
100 руб.