Математический анализ. Контрольная работа №2. 2-й семестр. Вариант № 8
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n; 2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n; 3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n; 2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n; 3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Контрольная работа решена полностью правильно. Зачёт получен с первого раза. Все задачи сопровождаются необходимым описанием.
Преподаватель: Агульник Ольга Николаевна
Преподаватель: Агульник Ольга Николаевна
Похожие материалы
Математический анализ. Контрольная работа за 2-й семестр. Вариант № 8
Kasser
: 7 декабря 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями обр
100 руб.
Математический анализ (часть 2-я) Контрольная работа. 2-й семестр
Uiktor
: 26 марта 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
189 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант №10
NataFka
: 17 ноября 2013
Вариант 10
Задача No 1
Даны функция , точка А(х0;у0) и вектор а(ах;ау).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора а
; A(1;1), а(2;1)
Задача No 2
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Задача No 3 .
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Задача 4.
Даны векторное поле F=Xi+Yj+Zk и пло
100 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант № 4
Alexis87
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: а) grad z в точке А. б) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, z=y2, x2+y2=9
4. Исследовать сходимость числового ряда
5. Найти интервал сходимост
150 руб.
Контрольная работа. Математический анализ (2-й семестр).
s-kim
: 9 февраля 2013
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда.
6. Вычислить определенный
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Roma967
: 26 февраля 2015
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
z = ln(3x2 +4y2); A (1;3), a (2;-1)
Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0).
y^6 = a^2∙(y^4 - x^4)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями.
z = 0, z = 1 – y^2, x =
450 руб.
Контрольная работа по дисциплине: Математический анализ (2-й семестр). Вариант № 8
verunchik
: 7 июля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
300 руб.
Математический анализ. Контрольная работа. 2-й семестр. 3-й вариант
SashaANG
: 5 ноября 2018
1) Вычислить несобственный интеграл или доказать его расходимость
2) Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3) Вычислить криволинейный интеграл по координатам
4) Найти общее решение дифференциального уравнения первого порядка
5) Решить задачу Коши
80 руб.
Другие работы
Контрольная работа по дисциплине: Основы оптической связи (часть 2). Вариант 09
Учеба "Под ключ"
: 17 августа 2022
1. Основы физической и квантовой оптики
1. Почему применяют диапазона волн 0,4 – 1,8мкм в технике оптической связи?
2. Объяснить связь энергии фотона и длины волны излучения.
3. Объяснить законы, являющиеся основой геометрической оптики.
4. В чём физический смысл показателя преломления?
5. Почему поляризуются электромагнитные волны?
6. Что является результатом интерференции волн?
7. Перечислить оптические приборы техники связи, которые строятся на основе интерференции.
8. Как устроена дифракцио
1500 руб.
Комплекс фонтанного оборудования АФК-3-65×14 для добычи нефти с усовершенствованием шаровых кранов КШ 65-14-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
nakonechnyy_lelya@mail.ru
: 30 августа 2017
Текст на украинском языке-Комплекс фонтанного оборудования АФК-3-65×14 для добычи нефти с усовершенствованием шаровых кранов КШ 65-14-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
РЕФЕРАТ
Пояснительная записка содержит: 75 с., 5 таблиц, 5 рисунков, 6 приложений, 28 источников.
Целью работы является: разработка фонтанной арматуры с шаровыми кранами. Исходя из поставленной цели, задачами работы являются:
- подбор марок сталей, из которых будут изготовлены элементы крановой фон
2303 руб.
Технологические основы отрасли. Экзамен.
ord1k
: 7 июля 2015
1.) Схемы узлов проводного вещания (централизованной и децентрализованной)
2.) Корректирование амплитудно-частотных характеристик магнитного звена магнитофона
3.) Виды модуляции
4.) Список литературы
120 руб.
Современные платежные системы
alfFRED
: 29 августа 2013
Введение
Мы рассмотрим, в этой курсовой работе, различные платежные системы. В наше время все больше появляется высокоэффективные системы денежного обращения и использования современных платежных механизмов. А также необходимо упомянуть о несомненной значимости в гражданском обороте - ценные бумаги. Они служат удобным средством обращения и платежа, выполняют роль кредитного инструмента и обеспечивают упрощенную передачу прав на различные блага. Что становится актуальным создание эффективной авт
10 руб.