Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №3.
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре.
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 25.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 25.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Теория сложностей вычислительных процессов и структур, лабораторная работа № 4, вариант № 3
alexxxxxxxela
: 5 сентября 2014
Постановка задачи
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Вершина 5.
180 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №3
wchg
: 15 октября 2013
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре
79 руб.
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
1231233
: 31 января 2012
Лабораторная работа №3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вариант 3
23 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
zhekaersh
: 5 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
40 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Bodibilder
: 29 мая 2019
Лабораторная работа №4
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирае
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
nik200511
: 7 июня 2018
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
Вершина 0.
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5
gnv1979
: 29 мая 2017
Лабораторная 4.
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 5
Вершина 4.
0 0 0 23 0 0
0 0 0 0 2 0
0 0 0 0 27 0
45 руб.
Другие работы
Кредиты Центрального банка России
OstVER
: 8 ноября 2012
Содержание
Введение
1. Значение и законодательная база рефинансирования банком россии коммерческих банков
1.1 Содержание и значение процентной политики центрального банка
1.2 Общая характеристика и механизм действия обязательных резервных требований
1.3 Сущность и значение операций на открытом рынке
1.4 Привлечения в депозиты денежных средств коммерческих банков
2. Порядок предоставления банком России кредитов
2.1 Кредиты под залог (блокировку) ценных бумаг из Ломбардного списка Банка России (вн
5 руб.
Приморье в структуре международных связей России
DocentMark
: 27 сентября 2013
Для Китая Приморье - это территория, прикрывающая кратчайший доступ к незамерзающему Японскому морю, что жизненно важно для провинций Хэйлунцзян и Цзилинь, заинтересованных в расширении связей с Японией. Для Японии (особенно ее западных префектур) Приморье - это начало удобной транспортной артерии к богатым ресурсами Сибири и Дальнему Востоку и северной части Евразийского материка. Для Южной Кореи Приморье - возможная сфера приложения капиталов.
Учитывая характер российский реформ и глобальны
Методы оптимизации. Вариант №3
artyomemelinnn
: 18 декабря 2021
Задача 1
Производственная фирма может выпускать любые из четырех
видов продукции. Затраты ограниченных ресурсов, цены реализации продукции в предстоящем временном периоде представлены в следующей таблице.
Прод.1 Прод.2 Прод.3 Прод.4 Объем ресурса
Ресурс 1 (ед.рес./ед.прод.) 4 5 9 12 277
Ресурс 2 (ед.рес./ед.прод.) 13 11 5 4 391
Цена (ден.ед./ед.прод.) 510 384 420 432
В плановом периоде фирма располагает ресурсами в следующих объемах:
Ресурс 1 в объёме 27
100 руб.
Максимизация прибыли в условиях совершенной конкуренции
alfFRED
: 31 октября 2013
Содержание
Введение.......................................................................................................3
1 Максимизация прибыли...........................................................................5
2 Совершенная конкуренция......................................................................7
2.1 Максимизация прибыли в краткосрочном периоде......................8
2.2 Максимизация прибыли в долговременном периоде….............15
Выво
10 руб.