Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №7.

Состав работы

material.view.file_icon
material.view.file_icon matr.txt
material.view.file_icon tsvp_lab4.exe
material.view.file_icon tsvp_lab4.pas
material.view.file_icon лр4.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры

Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).

Номер варианта выбирается по последней цифре.

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 25.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Лабораторная работа №4 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №7
Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 7 Вершина 1. 0 0 34 7 0 0 0 0 0 23 0 43 34 0 0 11 0
User SibGOODy : 21 июля 2018
200 руб.
promo
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
Лабораторная работа №3 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Вариант 3
User 1231233 : 31 января 2012
23 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
User zhekaersh : 5 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Лабораторная работа №4 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирае
User Bodibilder : 29 мая 2019
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 1 Вершина 0.
User nik200511 : 7 июня 2018
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5
Лабораторная 4. Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 5 Вершина 4. 0 0 0 23 0 0 0 0 0 0 2 0 0 0 0 0 27 0
User gnv1979 : 29 мая 2017
45 руб.
Лабораторная работа № 4 Теория сложностей вычислительных процессов и структур. Вариант 0
Лабораторная работа № 4 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбир
User Despite : 14 мая 2015
60 руб.
Методы оптимальных решений билет №8
1. Задача линейного программирования состоит в: а) отыскании наибольшего или наименьшего значения линейной функции при наличии линейных ограничений б) составлении и решении системы линейных уравнений в) поиске линейной траектории развития процесса, описываемого заданной системой ограничений. 2. Вектор, состоящий из максимальных значений всех целевых функций в многоцелевой задаче, называется а) идеальной точкой б) оптимальной точкой в) точкой достижимости 3. В задаче линейного программировани
User Antipenko2016 : 27 июля 2018
260 руб.
Коллекция Пермской государственной художественной галереи
насчитывающая 350 инвентарных номеров, скомплектована сотрудниками галереи за 60 лет. Наиболее активно сбор памятников шел в довоенный период. Только с 1923 по 1926 год Н.Н.Серебренников и А.К.Сыропятов (первый директор галереи) по труднейшим маршрутам провели шесть экспедиций. Как вспоминал Н.Н.Серебренников, «во все поездки пришлось проехать 5083 версты, из них 2059 верст лошадьми, 2105 пароходом и 919 верст железной дорогой». Было приобретено 412 отдельных фигур. В последующие годы коллекция
User evelin : 2 января 2014
5 руб.
Задание 77. Вариант 16 - Стойка. Исправление ошибок на чертеже
Возможные программы для открытия данных файлов: WinRAR (для распаковки архива *.zip или *.rar) КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d Любая программа для ПДФ файлов. Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007. Задание 77. Вариант 16 - Стойка. Исправление ошибок на чертеже Выполнить чертеж с исправлением допущенных на нём ошибок. В состав выполненной работы входят 4 файла: 1. 3D модель детали, выполненная по данному заданию, расширение файла
100 руб.
Задание 77. Вариант 16 - Стойка. Исправление ошибок на чертеже
Курсовая работа по дисциплине: Многоканальные телекоммуникационные системы. Вариант №8
Содержание Введение 3 1. Техническое задание 4 2. Выбор типа ЦСП для реконструируемых участков сети 5 3. Размещение НРП и ОРП на данных участках 6 4. Расчет значений допустимой и ожидаемой защищенности от помех 8 Приложение 1 11 Список использованной литературы 13 1. Техническое задание Задача проекта состоит в реконструкции участков сети А-В, Б-В и Г-Д путем замены аналоговых систем передачи на цифровые при использовании существующего кабеля. При этом обеспечить организацию следующих типов кан
User SibGOODy : 27 августа 2018
700 руб.
Курсовая работа по дисциплине: Многоканальные телекоммуникационные системы. Вариант №8 promo
up Наверх