Контрольная работа по дисциплине: «Основы теории массового обслуживания». 5-й вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача №1
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6; а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача №2
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания , соответственно, .
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача №3
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6; а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача №2
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания , соответственно, .
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача №3
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория массового обслуживания
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 18.03.2015
Кокорева Елена Викторовна
Оценена Ваша работа по предмету: Теория массового обслуживания
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 18.03.2015
Кокорева Елена Викторовна
Похожие материалы
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8
Jerryamantipe03
: 11 декабря 2022
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8 2020 год выполнения.
(Пример работы)
Задача №1.
Прибор может находиться в рабочем состоянии Е1, в ожидании ремонта Е2, в ремонте Е3. Вероятности перехода из состояния в состояние в течение суток заданы матрицей:
200 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания. Вариант №11
konst1992
: 31 января 2018
Задача No1
Рассмотрим однородную цепь Маркова, диаграмма состояний которой имеет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 минуты, а поток людей, желающих поговорить по телефону, можно счита
300 руб.
Контрольная работа по дисциплине: «Основы теории массового обслуживания», вариант 24
ннааттаа
: 7 января 2018
Задача No1.
Матрица вероятностей перехода цепи Маркова имеет вид: .
Распределение по состояниям в момент времени t = 0 определяется вектором:
(0) = (0.7; 0.2; 0.1).
Найти:
а) распределение по состояниям в моменты t = 1, 2, 3, 4.
в) стационарное распределение.
Задача No2.
На автозаправочной станции установлены три колонки для выдачи бензина. Около станции находится площадка на три машины для их ожидания в очереди (машина, которой не досталось место, уезжает на другую заправку). На станцию
300 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания. Вариант 11.
freelancer
: 21 августа 2016
Вариант 11
Задача No1
Рассмотрим однородную цепь Маркова, диаграмма состояний которой имеет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 минуты, а поток людей, желающих поговорить по телефону,
80 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания. Вариант №11
Roma967
: 6 декабря 2015
Задача №1
Рассмотрим однородную цепь Маркова, диаграмма состояний которой имеет следующий вид:
Требуется:
1. Составить матрицу Р переходных вероятностей.
2. Найти вектор п стационарного распределения вероятностей состояний.
3. Найти среднее время возвращения в каждое состояние
Задача №2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 минуты, а поток людей, желающих поговорить по телефону, можно считат
600 руб.
Контрольная работа по дисциплине: основы теории массового обслуживания. Вариант № 05. (4 семестр).
ua9zct
: 15 марта 2015
Задача №1.
Пусть Е1, Е2, Е3 – возможные состояния Марковской цепи и Р – матрица вероятностей переходов из состояния в состояние за один шаг:
Дать полное описание данной марковской цепи (классифицировать ее состояния). Найти, если это возможно, стационарное распределение вероятностей состояний системы (если невозможно, объяснить - почему).
Задача №2.
Рассматривается работа автоматической телефонной станции (АТС), рассчитанной на одновременное обс
50 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания . 4 семестр. Вариант №14
58197
: 26 октября 2013
Вариант 14.
Задача No1.50% детей выпускников НТГУ учатся в НТГУ 30% в других вузах и 20% в вузы не поступают. Из детей, родители которых окончили другие вузы, учатся в НТГУ – 25%, в других вузах – 60%, нигде не учатся – 15%. Для детей, родители которых не имеют высшего образования, эти проценты соответственно – 10, 40, 50.
Какова вероятность того, что в НТГУ будут учиться:
1.Правнук выпускника НТГУ.
2.Праправнук.
3.Достаточно отдаленный потомок.
Задача No2.Рассматривается установившийся режим р
60 руб.
Основы теории массового обслуживания. Билет-№8
Jerryamantipe03
: 12 февраля 2022
Билет 8.
1. Уравнения Чепмена-Колмогорова для дискретной неоднородной цепи Маркова.
2. Марковские СМО в установившемся режиме. Уравнения равновесия.))))))))))))))))
50 руб.
Другие работы
Испытания РЭСИ на воздействие солнечной радиации, соляного тумана, повышенного гидростатического давления, водонепроницаемость, брызгозащищенность и каплезащищенность
evelin
: 13 ноября 2012
Испытания на воздействие солнечной радиации
Проведение испытаний на воздействие солнечной радиации в совокупности с другими климатическими факторами имеет целью выявить возможные нарушения покрытий кожухов и крышек приборов, состояние маркировки и шкал, старение проводов и кабелей, а также различные другие дефекты.
Процесс проведения испытаний: после внешнего осмотра и измерения параметров в соответствии с требованиями ТУ, ПИ и методики изделия помещают в специальную камеру, в которой их облучаю
10 руб.
Теория электрических цепей. Контрольная работа. Вариант №11
Кот Леопольд
: 31 января 2021
Задача 3.1
Задача посвящена анализу переходного процесса в цепи первого порядка, содержащей резисторы, конденсатор или индуктивность. В момент времени t = 0 происходит переключение ключа K, в результате чего в цепи возникает переходной процесс.
1. Перерисуйте схему цепи (см. рис. 1.1) для Вашего варианта (таблица 1.1).
2. Выпишите числовые данные для Вашего варианта (таблица 1.2).
3. Рассчитайте все токи и напряжение на C или L в три момента времени: .
4. Рассчитайте классическим методом перех
100 руб.
Вал-шестерня m=2 z=27
lelya.nakonechnyy.92@mail.ru
: 28 апреля 2020
Вал-шестерня m=2 z=27-Детали машин-Деталировка-Сборочный чертеж-Чертежи-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Графическая часть-Оборудование-Машины и механизмы-Агрегаты-Установки-Комплексы-Узлы-Детали-Курсовая работа-Дипломная работа
200 руб.
Использование компьютера в учебно-воспитательном процессе
Elfa254
: 23 марта 2013
Персональный компьютер - универсальное обучающее средство, которое может быть с успехом использовано на самых различных по содержанию и организации учебных и внеучебных занятиях. При этом он вписывается в рамки традиционного обучения с широким использованием всего арсенала средств обучения. ПК может способствовать активному включению учащегося в учебный процесс, поддерживать интерес, способствовать пониманию и запоминанию учебного материала.
Язык программирования должен быть удобным для описания