Лабораторная работа №1-5 по дисциплине: «Методы оптимальных решений». Вариант №8
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Microsoft Excel
Описание
Лабораторная работа №1
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 14 телефонных, 13 телеграфных и 36 фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит 3 телефонных, 2 телеграфных и 3 фототелеграфных каналов, а кабель второго типа – 1 телефонный, 1 телеграфный и 7 фототелеграфных каналов. Стоимость 1 км кабеля первого типа равна 6 тыс. руб., второго типа – 1 тыс. руб.
Лабораторная работа №2
В каждом из пяти филиалов производственного объединения могут изготовляться изделия пяти видов. Учитывая необходимость углубления специализации, в каждом из филиалов решено выпускать только один вид продукции, при этом каждый из видов изделий должен выпускаться одним из филиалов. Себестоимость каждого изделия в каждом из филиалов различна и задается матрицей C
4 3 7 10 1
5 2 15 1 9
6 3 2 1 9
5 4 3 1 10
4 6 4 2 2
Найти распределение выпуска продукции между филиалами, чтобы общая себестоимость выпущенной продукции была минимальной.
Лабораторная работа №3
1. Решите аналитически матричную игру 2x2, заданную платежной матрицей
5 9
10 8
2. Проведите моделирование результатов игры с помощью таблицы равномерно распределенных случайных чисел, разыграв 30 партий; определите относительные частоты использования чистых стратегий каждым игроком и средний выигрыш, сравнив результаты с полученными теоретически в п.1.
Лабораторная работа №4
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3:
-2 4 3
0 -1 0
1 5 -2
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли – представленная игра может рассматриваться как игра двух игроков с нулевой суммой.
Решить матричную игру в MS Excel, записав ее как задачу линейного программирования.
Лабораторная работа №5
1. Решите задачу нелинейного программирования средствами Excel с использованием надстройки Поиск решений.
Дана система уравнений:
x1+3x2>=5
5x1+3x2<=40
x1-x2>=1
x1,x2>=0
Z=(x1+2)^2 + (x2+1)^2 ->min
2. Проверьте выполнение условий Куна-Таккера для найденной оптимальной точки.
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 14 телефонных, 13 телеграфных и 36 фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит 3 телефонных, 2 телеграфных и 3 фототелеграфных каналов, а кабель второго типа – 1 телефонный, 1 телеграфный и 7 фототелеграфных каналов. Стоимость 1 км кабеля первого типа равна 6 тыс. руб., второго типа – 1 тыс. руб.
Лабораторная работа №2
В каждом из пяти филиалов производственного объединения могут изготовляться изделия пяти видов. Учитывая необходимость углубления специализации, в каждом из филиалов решено выпускать только один вид продукции, при этом каждый из видов изделий должен выпускаться одним из филиалов. Себестоимость каждого изделия в каждом из филиалов различна и задается матрицей C
4 3 7 10 1
5 2 15 1 9
6 3 2 1 9
5 4 3 1 10
4 6 4 2 2
Найти распределение выпуска продукции между филиалами, чтобы общая себестоимость выпущенной продукции была минимальной.
Лабораторная работа №3
1. Решите аналитически матричную игру 2x2, заданную платежной матрицей
5 9
10 8
2. Проведите моделирование результатов игры с помощью таблицы равномерно распределенных случайных чисел, разыграв 30 партий; определите относительные частоты использования чистых стратегий каждым игроком и средний выигрыш, сравнив результаты с полученными теоретически в п.1.
Лабораторная работа №4
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3:
-2 4 3
0 -1 0
1 5 -2
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли – представленная игра может рассматриваться как игра двух игроков с нулевой суммой.
Решить матричную игру в MS Excel, записав ее как задачу линейного программирования.
Лабораторная работа №5
1. Решите задачу нелинейного программирования средствами Excel с использованием надстройки Поиск решений.
Дана система уравнений:
x1+3x2>=5
5x1+3x2<=40
x1-x2>=1
x1,x2>=0
Z=(x1+2)^2 + (x2+1)^2 ->min
2. Проверьте выполнение условий Куна-Таккера для найденной оптимальной точки.
Дополнительная информация
В архиве 5 лабораторных работ. Вариант 8.
Все работы успешно зачтены.
Выполняю и другие варианты.
Все работы успешно зачтены.
Выполняю и другие варианты.
Похожие материалы
Лабораторная работа №1 по дисциплине: «Методы оптимальных решений». Вариант №8
Roma967
: 21 марта 2015
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 14 телефонных, 13 телеграфных и 36 фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит 3 телефонных, 2 телеграфных и 3 фототелеграфных каналов, а кабель второго типа – 1 телефонный, 1 телеграфный и 7 фототелеграфных каналов. Стоимость 1 км кабеля первого типа равна 6 тыс. руб., второго типа – 1 тыс. руб.
200 руб.
Лабораторные работы №№ 1- 5 по дисциплине "Методы оптимальных решений". Вариант №1
Albinashiet
: 2 декабря 2014
Лабораторная работа №1
Решение задачи линейного программирования
Задание:
1. Составьте математическую модель задачи линейного программирования.
2. Решите её средствами Excel с использованием Поиска решений.
3. Проинтерпретируйте найденное решение.
Лабораторная работа №2
Задача о назначениях
Задание:
1. Составьте математическую модель задачи о назначениях.
2. Решите её средствами Excel с использованием Поиска решений.
3. Проинтерпретируйте найденное решение.
Лабораторная работа №3
Решение м
200 руб.
Метод оптимальных решений. Вариант № 8
СВЕТЛАНА28
: 19 сентября 2015
Задача No1.Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 14 телефонных, 13 телеграфных и 36фототелеграфных каналов c помощью кабелей двух типов. Кабель первого типа содержит 3 телефонных, 2 телеграфных и 3фототелеграфных каналов, а кабель второго типа – 1 телефонных, 1 телеграфных и 7фототелеграфных каналов. Стоимость 1 км кабеля первого типа равна 6тыс.руб., второго типа – 1 тыс.руб..
Задача2
Составить двойственную з
400 руб.
Лабораторная работа №5 по дисциплине: «Методы оптимальных решений». Вариант №8
Roma967
: 21 марта 2015
1. Решите задачу нелинейного программирования средствами Excel с использованием надстройки Поиск решений.
Дана система уравнений:
x1+3x2>=5
5x1+3x2<=40
x1-x2>=1
x1,x2>=0
Z=(x1+2)^2 + (x2+1)^2 ->min
2. Проверьте выполнение условий Куна-Таккера для найденной оптимальной точки.
200 руб.
Лабораторная работа №1. Методы оптимальных решений.
5234
: 14 марта 2017
Лабораторная работа №1
Тема: «Решение задачи линейного программирования»
Задание:
1. Составьте математическую модель задачи линейного программирования.
2. Решите её средствами Excel с использованием Поиска решений.
3. Проинтерпретируйте найденное решение.
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 12 телефонных, 33 телеграфных и 20 фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержи
180 руб.
Лабораторные работы №1-5 по дисциплине "Методы оптимальных решений". Вариант 0
flewaway
: 9 декабря 2017
Лабораторная работа №1
Решение задачи линейного программирования
Задание:
1. Составьте математическую модель задачи линейного программирования.
2. Решите её средствами Excel с использованием Поиска решений.
3. Проинтерпретируйте найденное решение.
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую a телефонных, b телеграфных и c фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит a1 телефон
750 руб.
Лабораторные работы №№1-5 по дисциплине: Методы оптимальных решений. Вариант №4
Елена22
: 3 мая 2016
Лабораторная работа №1
Задача
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 30 телефонных, 26 телеграфных и 54фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит 5 телефонных, 2 телеграфных и 3фототелеграфных каналов, а кабель второго типа – 5 телефонных, 4 телеграфных и 3фототелеграфных каналов. Стоимость 1 км кабеля первого типа равна 5тыс.руб., второго типа – 2тыс.руб..
5x1+3x2>=30
2x
950 руб.
Лабораторные работы №1-5 по дисциплине: «Методы оптимальных решений». Вариант №2
Roma967
: 26 февраля 2016
Лабораторная работа №1
Тема: «Решение задачи линейного программирования»
Задание:
1. Составьте математическую модель задачи линейного программирования.
2. Решите её средствами Excel с использованием Поиска решений.
3. Проинтерпретируйте найденное решение.
Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую 12 телефонных, 33 телеграфных и 20 фототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит
950 руб.
Другие работы
Контрольная работа по дисциплине: Дополнительные главы математического анализа. Вариант 0
SibGOODy
: 1 апреля 2018
Вариант №0
1. Найти область сходимости степенного ряда
2. Разложить функцию в ряд Фурье на данном отрезке (период Т)
f(x)=(pi-x)/2, [0;2pi], T=2pi
3. Начертить область на комплексной плоскости по данным условиям:
3<модуль(z)<6, 0<arf z < 3pi/4, Re z < 4, Im z <5.
4. Вычислить интеграл по дуге от точки до точки
Интеграл(zImzdz: x=y^(2), z1=0, z2=4+2i
5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
x'+2x=t+1; x(0)=1
500 руб.
Контрольная работа №2 по дисциплине Электромагнитные поля и волны. Вариант 25.
teacher-sib
: 21 октября 2016
Задача №1
Плоская электромагнитная волна с частотой f падает по нормали из вакуума на границу раздела с реальной средой. Параметры среды: , , удельная проводимость . Амплитуда напряженности электрического поля E .
1.Определить амплитуду отраженной волны.
2.Определить амплитуду прошедшей волны.
3.Определить значение вектора Пойнтинга отраженной волны.
4.Определить значение вектора Пойнтинга прошедшей волны.
5.Определить коэффициент стоячей волны.
6. Вычислить расстояние между минимумами поля в
300 руб.
Лабораторная работа № 2. Предоставление графической информации. 10-й вариант
Despite
: 14 мая 2015
Лабораторная работа № 2
Пpебpазовать BMP файл, создав вокpуг него pамку из пикселей случайного цвета. Шиpина рамки - 15 пикселей (Работа с pастpовыми данными).
60 руб.
Рахит: клиническая картина, диагноз, течение и прогноз
ostah
: 3 февраля 2013
Клиническая картина
В 1947 г. VI съезд детских врачей принял предложенную С.О. Дулицким развернутую классификацию рахита, по которой формы заболевания различаются в зависимости от периода, тяжести процесса и характера его течения. Периоды болезни: начальный, разгар болезни, реконвалес-ценция, остаточные явления.
Тяжесть: I степень — легкая, II степень — средней тяжести, III степень — тяжелая.
Характер течения: острый, подострый, рецидивирующий.
Е.М. Лепский для характеристики динамики процесса в