Экзаменационная работа Сибгути. Алгебра и геометрия. 1 семестр. билет 11
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
БИЛЕТ № 11
1. Ранг матрицы. Теорема о ранге.
2. Расстояние от точки до прямой и от точки до плоскости.
3. Найти длины диагоналей параллелограмма, построенного на векторах
4. Через точку провести прямые, параллельные асимптотам гиперболы.
5. Решить матричное уравнение
1. Ранг матрицы. Теорема о ранге.
2. Расстояние от точки до прямой и от точки до плоскости.
3. Найти длины диагоналей параллелограмма, построенного на векторах
4. Через точку провести прямые, параллельные асимптотам гиперболы.
5. Решить матричное уравнение
Дополнительная информация
В решении некоторых задач есть недочеты. В целом работа оценена на "хорошо".
Похожие материалы
Экзаменационная работа по Алгебре и Геометрии. 1-й семестр. Билет № 11
Fatony
: 15 июня 2012
БИЛЕТ № 11
1. Ранг матрицы. Теорема о ранге.
2. Расстояние от точки до прямой и от точки до плоскости.
3. Найти длины диагоналей параллелограмма, построенного на векторах и , где .
4. Через точку А (2; – 5) провести прямые, параллельные асимптотам гиперболы .
5. Решить матричное уравнение
100 руб.
Экзамен. Алгебра и геометрия. 1 семестр. СДТ
sanco25
: 1 марта 2012
1.Обратная матрица. Способы вычисления обратной матрицы.
Единичная матрица ранга n называется квадратная матрица m×n, у которой на главной диагонали стоят 1, а все остальные элементы равны 0.
2. Уравнение прямой в отрезках. Расстояние от точки до прямой на плоскости.
Если в общем уравнении прямой Ах + Ву + С = 0 С ≠0, то, разделив на –С, получим:
3. Найти площадь параллелограмма, построенного на векторах
4. Привести уравнение кривой к простейшему виду, построить
5. Решить матричное уравне
90 руб.
Алгебра и геометрия. Контрольная работа № 1. Семестр 1.
mikkikikki
: 7 мая 2012
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
100 руб.
Зачет по Алгебра и геометрия, 1 семестр, 6 вариант
Andreas74
: 24 июля 2018
Билет № 6
1. Вектор. Операции над векторами. Коллинеарность и компланарность векторов. Линейная зависимость векторов. Векторный базис. Разложение вектора по базису.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(5;2;0), B(5;4;0), C(7;-2;-1), D(4;3;1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго поряд
50 руб.
Алгебра и геометрия, зачет, 8 вариант, 1 семестр
Internazionale
: 9 июня 2018
Решить систему уравнений методом Крамера и методом Гаусса. Для данной матрицы найти обратную матрицу. Даны векторы . Даны координаты вершин треугольника . Даны координаты вершин пирамиды .
400 руб.
Алгебра и геометрия, зачет, 8 вариант, 1 семестр
Internazionale
: 9 июня 2018
Решить систему уравнений методом Крамера и методом Гаусса. Для данной матрицы найти обратную матрицу. Даны векторы
400 руб.
Алгебра и геометрия. Контрольная работа №1. Семестр №4
Arsikk
: 2 апреля 2014
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Алгебра и геометрия***
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 18.11.2013
Рецензия:Уважаемый М.П.Е., Ваша работа зачтена.
Агульник Владимир Игоревич
100 руб.
Алгебра и геометрия. 1 семестр. Зачёт. Билет №9.
58197
: 30 января 2012
Билет №9.
1. Матричные уравнения. Решение систем с помощью обратной матрицы.
2. Взаимное расположение двух плоскостей.
3. Найти точку пресечения прямой, отсекающей на осях координат отрезки 2 и -3 и прямой, проходящей через точки (-1;1) и (0;3).
4. Привести уравнение кривой к простейшему виду, построить
5. Найти модуль вектора .
10 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.