Контрольная работа по дисциплине: «Эконометрика» Вариант: 6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Контрольная работа по дисциплине: «Эконометрика» Вариант: 6
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER).
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F-Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3, но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow_Break), и задайте ей значения (можно в ручную редактированием в среде MATRIXER, а можно предварительно создать переменную в среде Excel, а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X1*Chow_Break, X2*Chow _Break, X3*Chow_Break, X1*(1-Chow_Break), X2*(1-Chow_Break), X3*(1- Chow_Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1 ) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:=Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resid2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER).
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F-Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3, но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow_Break), и задайте ей значения (можно в ручную редактированием в среде MATRIXER, а можно предварительно создать переменную в среде Excel, а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X1*Chow_Break, X2*Chow _Break, X3*Chow_Break, X1*(1-Chow_Break), X2*(1-Chow_Break), X3*(1- Chow_Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1 ) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:=Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resid2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Дополнительная информация
работа сдана в 2015г. без замечаний.
оценка: зачет.
оценка: зачет.
Похожие материалы
Контрольная работа по дисциплине "Эконометрика"
ДО Сибгути
: 26 декабря 2015
Задание.
Изучается зависимость цены на некоторый товар длительного пользования в магазинах немаленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
• Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
• Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобными);
•
150 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №7
SibGOODy
: 31 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент данных приведен ниже:
I Y X1 X2 X3
1 258,7424251 19,00014401 15,00062408 20,003034
2 278,1483375 15,00042731 7,001206603 28,00818065
3 317,0628785 23,00018563 1,000471387 26,99586761
4 317,2176894 23,99930969 -2,000672058 25,99638428
5 312,8286505 20,0009705 -4,99776773 31,00499145
6 320,6573656 27,00095
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант 21
SibGOODy
: 28 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии.
Фрагмент исходных данных (вариант 21):
I Y X1 X2 X3
1 254,0258612 26,99993506 -6,000751544 0,999628044
2 200,5911847 14,00039776 14,00032088 24,99863727
3 219,1684443 15,99944831 3,998535023 27,99876502
4 250,6468318 26,00101627 4,999294123 31,99315634
5 225,5263428 19,99907954 7,002824734 27,00623532
6 237,694
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №19
SibGOODy
: 28 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент исходных данных (первые 10 значений):
I Y X1 X2 X3
1 246,2355165 20,00017371 7,001488238 8,000799927
2 273,3560835 26,00078398 -3,000062405 7,001980093
3 225,8606823 16,00046735 1,000061458 28,99265482
4 237,439026 14,00086051 10,00057324 2,999145599
5 213,4838941 11,9995867 -3,000377192 25,00087718
6 21
800 руб.
Контрольная работа по дисциплине "Эконометрика". Вариант №10
flewaway
: 16 декабря 2017
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
250 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант 08
Учеба "Под ключ"
: 2 сентября 2017
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент данных (первые 10 значений):
1 318,0728729 22,99965362 11,00085486 5,000551289
2 276,9334471 16,99907239 1,999827017 20,00127117
3 279,689303 19,99938517 -7,999612688 33,9955015
4 296,3182596 26,00003921 -7,001002884 10,99840266
5 294,3997056 20,99950479 9,000853481 17,00397088
6 301,8690372 23,00008778
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №8
Елена22
: 14 марта 2017
Задание к контрольной работе
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной ре
300 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант 06
Учеба "Под ключ"
: 7 января 2017
Уважаемые студенты! Заданием на контрольную работу по курсу «эконометрика» является эмпирическое упражнение с заданными выборками. Исходные данные для задачи приведены по вариантам в файле “kr.xls ”, варианты отличаются исходными данными, задание — общее. Для выполнения работы рекомендуется использовать пакет MATRIXER и методические рекомендации к выполнению практического задания, содержащиеся в курсе лекций. Ответ на вторую часть контрольной работы должен быть оформлен в виде отчета о ходе и ре
800 руб.
Другие работы
Кризис инфекционного подхода
Aronitue9
: 10 декабря 2012
Рана - всякое механическое повреждение, при котором нарушены кожа или слизистая оболочка. Хотя раны лечат с незапамятных времен, общепринятой теории их лечения нет до сих пор.
Сто лет назад из раны были выделены микроорганизмы; с тех пор нагноение раны рассматривают как инфекционное осложнение. Если так, то для профилактики и лечения надо принимать те же меры, что и для лечения инфекционных болезней - предохранять организм от контакта с возбудителем и уничтожать микробы, коль скоро они там обнар
СИБГУТИ, Дискретная математика
fred_student
: 2 октября 2014
В данном сборнике решения следующих лабораторных работ:
1. Множества и операции над ними
2. Отношения и их свойства
3. Генерация перестановок
4. Генерация подмножеств
5. Поиск компонент связности графа
Все работы написаны на языке Pascal.
500 руб.
Русский язык. Контрольная работа
Vodoley
: 18 октября 2020
Задания к лекции “Современный русский язык”:
1. Каким словарем можно воспользоваться, чтобы узнать род существительных: “визави”, “протеже”. (см. глоссарий)
*словарем омонимов
*словарем антонимов
*фразеологическим словарем
*толковым словарем русского языка
2. Каким словарем можно воспользоваться, чтобы узнать происхождение слов: карболка, караван. (см. глоссарий)
*этимологическим
*орфоэпическим
*толковым
*словарем синонимов
3. Выскажите свое мнение по одному из поставленных вопросов (2-3-предл
45 руб.
Горное давление и его влияние на сечение горной выработки
Slolka
: 20 октября 2013
Горные породы внутри земной коры находятся в состоянии напряженного равновесия, вызываемого действием сил гравитационного и тектонического характера. Из-за отсутствия свободных пространств внутри массива без влияния внешних сил породы не могут перемещаться, изгибаться или изменять свою форму.
При проведении в толще пород горных выработок вокруг них происходит перераспределение напряжений, в процессе которого породы стремятся перейти в новое состояние равновесия и претерпевают те или иные деформ
10 руб.