Контрольная работа. Эконометрика. Вариант №1
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Задание 2
2.1. Проверка совместной значимости факторов X1, X3
Построим вспомогательную регрессию, не включающую в себя переменные X1 и X3.
Результаты построения и анализа:
Обычный метод наименьших квадратов
(линейная регрессия)
Зависимая переменная: Matrix[Y]
Количество наблюдений: 480
Переменная Коэффициент Станд. ошибка t-статистика Знач.
1 Константа 256.92870913 1.4669286141 175.1473839 [0.0000]
2 Matrix[X2] 2.2182524296 0.1871180973 11.854825705 [0.0000]
R^2adj. = 22.559186718% DW = 2.0040
R^2 = 22.720858562% S.E. = 27.909159505
Сумма квадратов остатков: 372324.326087608
Максимум логарифмической функции правдоподобия: -2277.98677445969
AIC = 9.4999448936 BIC = 9.517335669
F(1,478) = 140.5369 [0.0000]
Нормальность: Chi^2(2) = 3.713811 [0.1562]
Гетероскедастичность: Chi^2(1) = 0.330998 [0.5651]
Функциональная форма: Chi^2(1) = 3.321851 [0.0684]
AR(1) в ошибке: Chi^2(1) = 0.002118 [0.9633]
ARCH(1) в ошибке: Chi^2(1) = 2.102416 [0.1471]
Сумма квадратов остатков во вспомогательной матрице составляет ≈ 372324, что на 63050 или в 1,2 раза больше, чем в исходной (≈309274). Очевидно, из этого следует вывод о сильной зависимости Y от переменных X1 и Х3 (которые во вспомогательной матрице не учитывали).
Для проверки существенности ограничений в исходной регрессии используем «Критерий удаления переменных», где выбираем Х1 и Х3.
F-статистика для проверки существенности ограничений: F(2,476) = 48.52009 [0.0000] Нулевая гипотеза состоит в существенности ограничений (одновременное равенство нулю коэффициентов при выбранных переменных), малое значение РДУЗ говорит, что гипотезу следует отвергнуть, т.е. данная группа факторов значима и не может быть исключена.
2.2. RESET тест Рамсея
Построим вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения.
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Задание 2
2.1. Проверка совместной значимости факторов X1, X3
Построим вспомогательную регрессию, не включающую в себя переменные X1 и X3.
Результаты построения и анализа:
Обычный метод наименьших квадратов
(линейная регрессия)
Зависимая переменная: Matrix[Y]
Количество наблюдений: 480
Переменная Коэффициент Станд. ошибка t-статистика Знач.
1 Константа 256.92870913 1.4669286141 175.1473839 [0.0000]
2 Matrix[X2] 2.2182524296 0.1871180973 11.854825705 [0.0000]
R^2adj. = 22.559186718% DW = 2.0040
R^2 = 22.720858562% S.E. = 27.909159505
Сумма квадратов остатков: 372324.326087608
Максимум логарифмической функции правдоподобия: -2277.98677445969
AIC = 9.4999448936 BIC = 9.517335669
F(1,478) = 140.5369 [0.0000]
Нормальность: Chi^2(2) = 3.713811 [0.1562]
Гетероскедастичность: Chi^2(1) = 0.330998 [0.5651]
Функциональная форма: Chi^2(1) = 3.321851 [0.0684]
AR(1) в ошибке: Chi^2(1) = 0.002118 [0.9633]
ARCH(1) в ошибке: Chi^2(1) = 2.102416 [0.1471]
Сумма квадратов остатков во вспомогательной матрице составляет ≈ 372324, что на 63050 или в 1,2 раза больше, чем в исходной (≈309274). Очевидно, из этого следует вывод о сильной зависимости Y от переменных X1 и Х3 (которые во вспомогательной матрице не учитывали).
Для проверки существенности ограничений в исходной регрессии используем «Критерий удаления переменных», где выбираем Х1 и Х3.
F-статистика для проверки существенности ограничений: F(2,476) = 48.52009 [0.0000] Нулевая гипотеза состоит в существенности ограничений (одновременное равенство нулю коэффициентов при выбранных переменных), малое значение РДУЗ говорит, что гипотезу следует отвергнуть, т.е. данная группа факторов значима и не может быть исключена.
2.2. RESET тест Рамсея
Построим вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения.
Похожие материалы
Контрольная работа по эконометрике. Вариант №1
ДО Сибгути
: 28 декабря 2015
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регре
40 руб.
Эконометрика. Контрольная работа. ВАРИАНТ №1
7059520
: 11 марта 2015
!!!ОПИСАНИЕ НА ФОТО!!!
Содержание
Описание данных и задание ……………………………………………....3
Задание 1 …………………………………………………………………...5
Задание 2 …………………………………………………………………...7
100 руб.
Контрольная работа по дисциплине «Эконометрика». Вариант №1.
ДО Сибгути
: 26 декабря 2015
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
200 руб.
Контрольная работа по дисциплине «Эконометрика». Вариант №1
Jack
: 17 января 2015
Содержание
Описание данных и задание..……………………………....3
Задание 1………………………………………………………………...5
Задание 2………………………………………………………………...7
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в сре
400 руб.
Контрольная работа. Эконометрика
vladslad
: 27 июня 2016
Задание 2
1. Выполнить анализ динамики показателя, указанного в варианте задания, за 5 последних лет (в абсолютном и относительном выражении):
а) от года к году;
б) в среднем за рассматриваемый период.
Показатель – численность иностранных граждан по федеральным округам (ФО).
150 руб.
Эконометрика. вариант 1
Alekx900
: 12 января 2020
ЗАДАЧА No1
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (У, млн. руб) от объема капиталовложений (Х, млн. руб).
Требуется:
1. Для характеристики У от Х построить следующие модели:
линейную,
степенную,
показательную,
гиперболическую.
2. Оценить каждую модель, определив:
индекс корреляции,
среднюю относительную ошибку,
коэффициент детерминации,
F – критерий Фишера.
3. Составить сводную таблицу вычислений, выбрат
600 руб.
"Эконометрика". Вариант №1
Sibgoty
: 7 апреля 2019
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените зн
150 руб.
Контрольная работа №1. Эконометрика.
studypro2
: 28 июня 2017
КОНТРОЛЬНАЯ РАБОТА 1
По территориям региона за некоторый год приводятся данные о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны (региона) в рублях, обозначаемые х, и среднедневная заработная плата в рублях — у. Соответственно: х — 78, 82, 87, 79, 89, 106, 67, 88, 73, 87, 76, 115; у — 133, 148, 134, 154, 162, 195, 139, 158, 152, 162, 159, 173.
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и средн
200 руб.
Другие работы
Лабораторные работы 1-3 по дисциплине: Теория связи. Вариант №14
IT-STUDHELP
: 19 июня 2023
Лабораторная работа No1
Тема: «Исследование спектра сигналов»
Цель работы
1. Изучить связь между формой видеосигнала и его спектром.
2. Изучить форму ДАМ сигнала и его спектр.
3. Изучить форму ДФМ сигнала и его спектр.
4. Объяснить различия в спектре ДАМ, ДФМ и видеосигнала.
Задание
1. Выбрать режим видеосигнала. Изучить влияние значений уровня сигнала А1 и А0 на спектр сигнала в комплексной и вещественной форме. А1, А0 – (0 – 2.0)В.
2. Изучить влияние Т и τ на спектр сигнала в комплексной и
1200 руб.
Управление персоналом как тип менеджмента
Анастасия181
: 17 августа 2020
РЕФЕРАТ СИБИТ ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ ТЕМА: Управление персоналом как тип менеджмента
Оглавление
Введение 3-5
Система управления персоналом 6-8
Управление человеческими ресурсами и управление персоналом 9-10
Модели управление персоналом 11-12
Заключение 13-14
Список использованной литературы и источников 15
300 руб.
Технологический процесс изготовления шестерни КТМ.401.124.01.00.ПЗ
Рики-Тики-Та
: 26 августа 2012
Содержание
Введение…………………………………………………………………………….
1 Назначение и конструкция детали………………………………………………
2 Анализ технологичности конструкции детали…………………………………
3 Определение типа производства………………………………………………...
4 Выбор заготовки………………………………………………………………….
5 Принятый маршрутный техпроцесс…………………………………………….
6 Расчет припусков на обработку…………………………………………………
7 Расчет режимов резания………………………………………………………….
7.1 Расчет режимов резания аналитическим методом…………………………...
7.2 Расчёт режимов резания по н
55 руб.
Проектирование смесителя лопастного продуктивностью 40 м3/с
elementpio
: 19 сентября 2012
Добыча и переработка нерудных строительных материалов - древней-шая область производственной деятельности человека. На протяжении всей истории человечества камень неизбежно служил основным материалом при создании сооружений. Длительное время производство нерудных строительных материалов было примитивным и основывалось на ручном труде. В дореволюционной России эта отрасль промышленности была на низком уровне. В стране действовало не более 360 карьеров, на которых добывали всего 2 милионов м3 в го
50 руб.