ОТВЕТЫ на ТЕСТ №1 по предмету Теории вероятностей и математическая статистика

Состав работы

material.view.file_icon 04E5FEDC-2CB1-48FD-9851-75870EAFA873.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

1) В библиотеке на книжной полке расставлены 10 книг различных авторов. 3 студента могут выбрать по одной книге. Сколько всевозможных вариантов выбора книг можно осуществить?
2) Паспорт гражданина Российской Федерации состоит из серии и номера. Серия представляет собой 4 цифры, а номер – 6 цифр, расположенных в произвольном порядке. Определите возможное количество различных паспортов, которое может быть выдано гражданам Российской Федерации.
3) На экзамене по теории вероятностей было 34 билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав первый раз «неудачный билет»?
4) В магазине имеется 15 видов различных коробок с конфетами. Представитель фирмы покупает 10 коробок, выбирая каждую случайным образом. Сколько существует способов выбрать случайно 10 самых дорогих коробок конфет, если все коробки с конфетами должны быть разными?
5) Собрание сочинений А. С. Пушкина издано в 6 томах. Книги расставляют на полке в случайном порядке. Сколько существует способов расставить эти тома?
6) Собрание сочинений А. С. Пушкина издано в 6 томах. Книги расставляют на полке в случайном порядке. Сколько способов гарантирует, что первые 3 тома будут стоять по порядку возрастания номеров?
7) Каждая буква слова «статистика» написана на разных карточках. Сколькими различными способами можно переставить эти буквы?
8) В киоске продавец музыкальных дисков предлагает организатору дискотеки 9 различных дисков. Однако сумма, которой располагает диск-жокей, позволяет купить ему только 3 различных диска. Сколько существует способов случайного выбора 3 различных дисков из 9?
9) Выделены крупные суммы на выполнение 5 объектов строительных работ. Сколько существует способов случайного распределения этих 5 объектов между 7 возможными фирмами-подрядчиками?
10) Пусть событие А состоит в том, что из 10 случайным образом купленных лотерейных билетов не более 2 окажутся выигрышными. Сколько элементарных событий благоприятствуют событию А, событию Ā?
11) Игрок из колоды карт без возвращения по 1 извлекает карты до тех пор, пока не появится туз. Определить вероятность того, что он сделает ровно 4 извлечения, если считать, что колода содержит 36 карт.
12) Инвестор предполагает, что в следующем периоде вероятность роста цены акций компании N будет составлять 0,7, а компании M – 0,4. 14) Вероятность того, что цены поднимутся на те и другие акции, равна 0,28. Вычислите вероятность роста цен на акции или компании N, или компании M, или обеих компаний вместе.
13) Имеются 3 партии электроламп. Вероятности того, что лампа проработает заданное время, равны соответственно для этих партий 0,7; 0,8; 0,9. Какова вероятность того, что наудачу выбранная лампа проработает заданное время?
14) Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,15; 0,75; и 0,1 соответственно. При «хорошей» ситуации индекс экономического состояния возрастает с вероятностью 0,6, при «посредственной» с вероятностью 0,3 и при «плохой» с вероятностью 0,1. Определите вероятность того, что экономическая ситуация в стране не «плохая», если известно, что индекс экономического состояния возрос.
15) Аналитик предполагает, что один из 600 вкладчиков утроит свой капитал в течение года, вложив его в новое производство. 1000 вкладчиков вложили деньги в производство. Определите вероятность того, что 3 вкладчика утроят свой капитал в течение года.
16) Аналитик предполагает, что один из 600 вкладчиков утроит свой капитал в течение года, вложив его в новое производство. 1000 вкладчиков вложили деньги в производство. Определите наивероятнейшее число вкладчиков, которые утроят капитал в течение года.
17) Для поступления в вуз необходимо успешно сдать вступительные экзамены. В среднем их успешно сдают лишь 65% абитуриентов. Предположим, что в приемную комиссию поступило 700 заявлений. Чему равна вероятность того, что хотя бы 500 поступающих успешно сдадут все экзамены?
18) Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите вероятность попадания случайной величины X в интервал (0,5; 1).
19) Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите дифференциальную функцию (функцию плотности вероятностей) f(x).
20 Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение σ(X) случайной величины X.
21) Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки превысит 11%.
22) Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки окажется менее 14%.
23) Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки будет в пределах от 12 до 15%.
24) В хозяйстве имеется 100 автомобилей. Вероятность безотказной работы каждого из них в течение определенного периода составляет 0,9. С помощью неравенства Чебышева оцените вероятность того, что отклонение числа безотказно работавших автомобилей за определенный период от его математического ожидания не превзойдет по модулю 5.
25) Случайная величина X задана интегральной функцией:
С помощью неравенства Чебышева определите вероятность того, что .

Дополнительная информация

ТЕСТ С ОТВЕТАМИ
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх