Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №3

Состав работы

material.view.file_icon
material.view.file_icon экзамен1.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Задание 1.
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли

Задание 2.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?

Задание 3.
Дискретная случайная величина имеет следующий ряд распределения
Х -2  -1 0 5 10
р 0,11 0,22 0,11 а 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Задание 4.
Непрерывная случайная величина имеет плотность распределения
Найти величину с, интегральную функцию распределения, математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Задание 5.
Двумерная дискретная случайная величина имеет таблицу распределения
Y
X 1 2 3 4
10 0,01 0,11 0,09 0,12
20 0 0,13 0,11 0,05
30 0,01 0,16 0,02 0,05
40 0 0,11 0,03 q

Найти величину q и коэффициент корреляции этой случайной величины.
Экзамен по дисциплине «Теория вероятности и математическая статистика». Билет № 3
1. Основные соединения и формулы комбинаторики. 2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком? 3. Среднее число вызовов, поступающих на АТС в 1 сек., равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов. 4. Случайная величина Х имеет плотность распределения. Найти с, M(X). 5.
User sanco25 : 6 февраля 2012
90 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика
Задание 1. 1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли Задание 2. 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? Задание 3. Дискретная случайная величина имеет следующий ряд распределения Х -2 -1 0 5 10 р 0,11 0,22 0,11 а 0,04 Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. Задание 4. Непрерыв
User Кошка : 8 апреля 2016
180 руб.
Экзамен по дисциплине: "Теория вероятностей и математическая статистика"
1. Понятие случайного события. Виды событий. Операции над событиями. 2. Монета бросается 3 раза. Какова вероятность, что все три раза она упадёт одной стороной? 3. Величина детали – случайная величина распределенная нормально (среднее – 10 м, среднее квадратическое отклонение – 0,25 м). Какова вероятность того, что она будет превышать среднее значение не более чем на 0,5 м.? 4. Случайная точка (X,Y) распределена равномерно в области {0<x<2, -1<y<1} Найти плотность распределения компонент. 5.
User 4eJIuk : 13 февраля 2012
70 руб.
Теория вероятностей и математическая статистика, Экзамен, Билет №3
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? 3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральн
User artinjeti : 9 апреля 2018
150 руб.
Теория вероятностей и математическая статистика, Экзамен, Билет №3
Теория вероятностей и математическая статистика. Экзамен. Билет №3
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? 3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интеграль
User Nadyuha : 29 ноября 2017
200 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Билет №3. Теоретический вопрос. Схема Бернулли и Формула Бернулли. Практическое задание. Оцените распределение случайной величины по выборке: Xi 1.138 0.317 -0.048 0.062 -6.102 0.021 0.643 -8.326 -0.431 0.698 - выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению - оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода - проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, про
User DENREM : 19 марта 2014
120 руб.
Теория вероятности и математическая статистика. Экзамен. Билет № 3
1. Основные соединения и формулы комбинаторики. 2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком? 3. Среднее число вызовов, поступающих на АТС в 1 сек, равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов. 4. Случайная величина Х имеет плотность распределения . Найти 5. Каков
User radist24 : 15 декабря 2011
70 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Онлайн
Описательная статистика 1. Совокупность объектов, из которых производится выборка, называется ... совокупностью. выборочной генеральной универсальной Дискретные случайные величины 2. Вероятность попадания случайной величины X в промежуток от а до B (включая а) выражается формулой. Дискретные случайные величины 3. Значение дискретной случайной величины, имеющее самую большую вероятность, носит название... мода математическое ожидание максимум Корреляционный и регрессионный анализ 4. Если значе
User IT-STUDHELP : 9 декабря 2019
400 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Онлайн
Многогранник 6 вариант
Вариант 6 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Варианты заданий для самостоятельной работы по курсу «Начертательная геометрия и инженерная графика» на темы «Пересечение поверхностей» и «Изображения» для студентов всех направлений и форм обучения Составители: А.Н. Богданова, старший преподаватель И.А. Венедиктова, кандидат технических наук, доцент Н.Г. Туктарова, старший преподаватель Выполнено в формате dwg
User Yammbx : 26 декабря 2024
100 руб.
Многогранник 6 вариант
Лабораторная работа №2. Работа с графикой
В лабораторной работе рассматривается построение графиков функций на плоскости и геометрических фигур в пространстве. Оба задания делаются в одной книге на разных листах Часть 1. Графическое решение систем уравнений Решить графически систему уравнений: в диапазоне с шагом Технология выполнения. Системы уравнений с двумя неизвестными могут быть приближенно решены графически. Их решением являются координаты точки пересечения линий, соответствующих уравнениям систем. При этом точность решени
User Nitros : 9 июня 2025
50 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 8 Вариант 81
Водяной пар с начальным давлением р1=5 МПа и степенью сухости х1=0,95 поступает в пароперегреватель, где его температура повышается на Δt; после перегревателя пар изоэнтропно (адиабатно) расширяется в турбине до давления p2. Пользуясь h-s — диаграммой для водяного пара (приложение Д, рисунок Д1), определить: — количество теплоты (на 1 кг пара), подведенной к нему в пароперегревателе; — работу цикла Ренкина и степень сухости пара х2 в конце расширения; — термический КПД цикла; — работ
User Z24 : 20 декабря 2025
180 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 8 Вариант 81
Онлайн Тест 1 по дисциплине: Операционные системы (Unix).
Вопрос №1 Сочетание каких клавиш позволяет приостановить процесс? Ctrl+O Ctrl+Z Ctrl+D Ctrl+C Ctrl+S Вопрос №2 Строка приглашения выглядит следующим образом: [логин_пользователя@имя_компьютера:полное_имя_текущей_директории]$. Задать правильное значение переменной PS1: PS1="[\u @\h : \w]$" PS1="[\d @\n : \W]$" PS1="[\p @\u : \d]$" Вопрос №3 Команда rm позволяет... Нет подходящего варианта Создать файл Редактировать файл Вывести содержимое указанного файла на экран Удалить файл Воп
User IT-STUDHELP : 10 апреля 2023
700 руб.
promo
up Наверх