Контрольная работа №1 по дисциплине: Метрология, стандартизация и сертификация. Вариант №3.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) погрешности результата наблюдений (стандартную неопределенность единичного измерения) S;
3. Границы максимальной неопределенность случайной составляющей погрешности результата наблюдений Δ макс;
4. Оценку среднего квадратического отклонения погрешности случайной составляющей результата измерения (стандартную неопределенность результата измерения) S( );
5. Границы доверительного интервала (расширенную неопределенность) для результата измерения расстояния до места повреждения e при заданной доверительной вероятности a ;
6. Записать результат измерения расстояния до места повреждения в соответствии с нормативными документами.
7. Систематическую составляющую погрешности измерения рефлектометра q , если после обнаружения места повреждения было установлено. что действительное расстояние до него составляло метров. Сравните ее с доверительным интервалом случайной составляющей погрешности результата измерения, и сделать вывод;
8.Предложить способ уменьшения оценки СКО случайной составляющей погрешности результата измерения в D раз.
Исходные данные и промежуточные результаты расчетов сведены в таблицу
Noп/п No
измерений i Значения
li, м , м
1 1 274,35 -1,223571 1,497127
2 2 274,57 -1,003571 1,007156
3 3 276,68 1,106429 1,224184
4 4 276,17 0,596429 0,355727
5 5 275,81 0,236429 0,055898
6 65 276,56 0,986429 0,973041
7 66 273,75 -1,823571 3,325413
8 67 274,76 -0,813571 0,661898
9 68 274,24 -1,333571 1,778413
10 69 277,07 1,496429 2,239298
11 70 274,56 -1,013571 1,027327
12 71 277,37 1,796429 3,227156
13 72 275,25 -0,323571 0,104698
14 73 276,89 1,316429 1,732984
Задача No 2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн (рисунок 2.1).
Мощность в нагрузке измеряют с помощью либо вольтметра V, либо амперметра А при нормальных условиях измерения. Показания этих приборов и их метрологические характеристики – условное обозначение класса точности и конечное значение шкалы прибора или диапазона измерения приведены в таблицах 1 и 2. В таблице 3 приведены: метрологические характеристики измерительного генератора – числовое значение сопротивления Rг и его относительная погрешность d Rг; сопротивления нагрузки – значения сопротивления Rн и его относительная погрешность d Rн.
Показание вольтметра UV, B
7,2
Класс точности вольтметра %
2,5
Конечное значение шкалы вольтметра или диапазон измерения, В
0, 10
Rг , Ом 50
Относительная погрешность,
Rг, %
3,4
Rн, Ом 300
Относительная погрешность,
Rн, %
4,2
Определить
абсолютный уровень напряжения
рUv
Определить абсолютный уровень мощности
р
Необходимо определить в соответствии с таблицей :
1. Абсолютный уровень напряжения на сопротивлении нагрузки рUv.
2. Абсолютный уровень суммарной мощности, выделяемой на внутреннем сопротивлении генератора и сопротивлении нагрузки рS .
3. Оценить границы абсолютной погрешности измерения абсолютных уровней напряжения и мощности, определенных в п.1 и п.2.
4. Оформить результаты измерения абсолютных уровней напряжения и мощности в соответствии с нормативными документами.
Задача No 3
На рисунке 3.1 показаны осциллограммы периодических сигналов, которые наблюдали на выходе исследуемого устройства .
Требуется найти:
1. Аналитическое описание исследуемого сигнала.
2. Пиковое (Um), среднее (Uср ), средневыпрямленное (Uср.в) и среднеквадратическое (U) значения напряжения выходного сигнала заданной Вам формы.
3. Пиковое ( ), среднее ( ), средневыпрямленное ( ) и среднеквадратическое ( ) значения напряжения переменной составляющей заданного выходного сигнала.
4. Коэффициенты амплитуды (Ka, ), формы (Kф, ) и усреднения (Kу, ) всего исследуемого сигнала и его переменной составляющей.
5. Показания вольтметров с различными типами преобразователей с закрытым (З) или открытым (О) входом в соответствии с заданием, если вольтметры проградуированы в среднеквадратических значениях для гармонического сигнала.
6. Оценить предел допускаемой относительной погрешности (расширенной неопределенности) показаний вольтметров, определенных в 5 пункте задания, если используемые измерительные приборы имеют класс точности g и конечное значение шкалы (предел измерения) Uк указанные в таблицах 3.1 и 3.2.
7. Оформить результаты измерений напряжения вольтметрами в соответствии с нормативными документами, если измерения проведены в нормальных условиях.
Таблица 3.1
Задача No4
При измерении частоты генератора методом сравнения (рис. 4.1) к входу канала горизонтального отклонения (канала "X") осциллографа приложен гармонический сигнал от генератора образцовой частоты:
а к входу канала вертикального отклонения (канала "Y") – гармонический сигнал исследуемого генератора:
где ω=2πƒ – круговая частота,
ƒ – циклическая частота,
ψ и φ – начальные фазовые углы образцового и исследуемого сигналов соответственно. Измерения проведены в нормальных условиях, границы относительной погрешности частоты образцового генератора d fобр определены с вероятностью P = 0.997.
Рисунок 4.1
Задание.
1. Определить по заданным значениям частот сигналов ожидаемое отношение числа точек пересечений фигуры Лиссажу с горизонтальной секущей nг к числу точек пересечений фигуры Лиссажу с вертикальной секущей nв.
2. Построить фигуру Лиссажу, которую можно наблюдать на экране осциллографа при заданных значениях Um обр , ƒобр , Um иссл , ƒиссл , ψ и φ , считая коэффициенты отклонения каналов Y (ko.в) и X (ko.г) одинаковыми и равными 1 В/см .
3. Оценить абсолютную Δƒcр и относительную δƒcр погрешности сравнения частот исследуемого и образцового генераторов, вызванную изменением фигуры Лиссажу, если за время, равное Т секунд, она повторно воспроизводилась 5 раз.
4. Оценить границы абсолютной Δƒиссл и относительной δƒиссл погрешности измерения частоты исследуемого генератора, если известны границы относительной погрешности частоты образцового генератора d fобр .
5. Записать результат измерения частоты ƒиссл в соответствии с нормативными документами в двух вариантах: 1) с указанием границ абсолютной погрешности; 2) с указанием границ относительной погрешности.
Исходные данные для решения приведены в таблицах 4.1 и 4.2.
Таблица 4.1
M 0
Um обр ,
В 3
ƒобр ,
Гц 1400
φ,
рад π/2
d fобр ,
% 0,54
Таблица 4.2
N 3
Т,
с 9
ψ,
рад π
ƒиссл,
Гц 5600
Um иссл ,
В 2
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) погрешности результата наблюдений (стандартную неопределенность единичного измерения) S;
3. Границы максимальной неопределенность случайной составляющей погрешности результата наблюдений Δ макс;
4. Оценку среднего квадратического отклонения погрешности случайной составляющей результата измерения (стандартную неопределенность результата измерения) S( );
5. Границы доверительного интервала (расширенную неопределенность) для результата измерения расстояния до места повреждения e при заданной доверительной вероятности a ;
6. Записать результат измерения расстояния до места повреждения в соответствии с нормативными документами.
7. Систематическую составляющую погрешности измерения рефлектометра q , если после обнаружения места повреждения было установлено. что действительное расстояние до него составляло метров. Сравните ее с доверительным интервалом случайной составляющей погрешности результата измерения, и сделать вывод;
8.Предложить способ уменьшения оценки СКО случайной составляющей погрешности результата измерения в D раз.
Исходные данные и промежуточные результаты расчетов сведены в таблицу
Noп/п No
измерений i Значения
li, м , м
1 1 274,35 -1,223571 1,497127
2 2 274,57 -1,003571 1,007156
3 3 276,68 1,106429 1,224184
4 4 276,17 0,596429 0,355727
5 5 275,81 0,236429 0,055898
6 65 276,56 0,986429 0,973041
7 66 273,75 -1,823571 3,325413
8 67 274,76 -0,813571 0,661898
9 68 274,24 -1,333571 1,778413
10 69 277,07 1,496429 2,239298
11 70 274,56 -1,013571 1,027327
12 71 277,37 1,796429 3,227156
13 72 275,25 -0,323571 0,104698
14 73 276,89 1,316429 1,732984
Задача No 2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн (рисунок 2.1).
Мощность в нагрузке измеряют с помощью либо вольтметра V, либо амперметра А при нормальных условиях измерения. Показания этих приборов и их метрологические характеристики – условное обозначение класса точности и конечное значение шкалы прибора или диапазона измерения приведены в таблицах 1 и 2. В таблице 3 приведены: метрологические характеристики измерительного генератора – числовое значение сопротивления Rг и его относительная погрешность d Rг; сопротивления нагрузки – значения сопротивления Rн и его относительная погрешность d Rн.
Показание вольтметра UV, B
7,2
Класс точности вольтметра %
2,5
Конечное значение шкалы вольтметра или диапазон измерения, В
0, 10
Rг , Ом 50
Относительная погрешность,
Rг, %
3,4
Rн, Ом 300
Относительная погрешность,
Rн, %
4,2
Определить
абсолютный уровень напряжения
рUv
Определить абсолютный уровень мощности
р
Необходимо определить в соответствии с таблицей :
1. Абсолютный уровень напряжения на сопротивлении нагрузки рUv.
2. Абсолютный уровень суммарной мощности, выделяемой на внутреннем сопротивлении генератора и сопротивлении нагрузки рS .
3. Оценить границы абсолютной погрешности измерения абсолютных уровней напряжения и мощности, определенных в п.1 и п.2.
4. Оформить результаты измерения абсолютных уровней напряжения и мощности в соответствии с нормативными документами.
Задача No 3
На рисунке 3.1 показаны осциллограммы периодических сигналов, которые наблюдали на выходе исследуемого устройства .
Требуется найти:
1. Аналитическое описание исследуемого сигнала.
2. Пиковое (Um), среднее (Uср ), средневыпрямленное (Uср.в) и среднеквадратическое (U) значения напряжения выходного сигнала заданной Вам формы.
3. Пиковое ( ), среднее ( ), средневыпрямленное ( ) и среднеквадратическое ( ) значения напряжения переменной составляющей заданного выходного сигнала.
4. Коэффициенты амплитуды (Ka, ), формы (Kф, ) и усреднения (Kу, ) всего исследуемого сигнала и его переменной составляющей.
5. Показания вольтметров с различными типами преобразователей с закрытым (З) или открытым (О) входом в соответствии с заданием, если вольтметры проградуированы в среднеквадратических значениях для гармонического сигнала.
6. Оценить предел допускаемой относительной погрешности (расширенной неопределенности) показаний вольтметров, определенных в 5 пункте задания, если используемые измерительные приборы имеют класс точности g и конечное значение шкалы (предел измерения) Uк указанные в таблицах 3.1 и 3.2.
7. Оформить результаты измерений напряжения вольтметрами в соответствии с нормативными документами, если измерения проведены в нормальных условиях.
Таблица 3.1
Задача No4
При измерении частоты генератора методом сравнения (рис. 4.1) к входу канала горизонтального отклонения (канала "X") осциллографа приложен гармонический сигнал от генератора образцовой частоты:
а к входу канала вертикального отклонения (канала "Y") – гармонический сигнал исследуемого генератора:
где ω=2πƒ – круговая частота,
ƒ – циклическая частота,
ψ и φ – начальные фазовые углы образцового и исследуемого сигналов соответственно. Измерения проведены в нормальных условиях, границы относительной погрешности частоты образцового генератора d fобр определены с вероятностью P = 0.997.
Рисунок 4.1
Задание.
1. Определить по заданным значениям частот сигналов ожидаемое отношение числа точек пересечений фигуры Лиссажу с горизонтальной секущей nг к числу точек пересечений фигуры Лиссажу с вертикальной секущей nв.
2. Построить фигуру Лиссажу, которую можно наблюдать на экране осциллографа при заданных значениях Um обр , ƒобр , Um иссл , ƒиссл , ψ и φ , считая коэффициенты отклонения каналов Y (ko.в) и X (ko.г) одинаковыми и равными 1 В/см .
3. Оценить абсолютную Δƒcр и относительную δƒcр погрешности сравнения частот исследуемого и образцового генераторов, вызванную изменением фигуры Лиссажу, если за время, равное Т секунд, она повторно воспроизводилась 5 раз.
4. Оценить границы абсолютной Δƒиссл и относительной δƒиссл погрешности измерения частоты исследуемого генератора, если известны границы относительной погрешности частоты образцового генератора d fобр .
5. Записать результат измерения частоты ƒиссл в соответствии с нормативными документами в двух вариантах: 1) с указанием границ абсолютной погрешности; 2) с указанием границ относительной погрешности.
Исходные данные для решения приведены в таблицах 4.1 и 4.2.
Таблица 4.1
M 0
Um обр ,
В 3
ƒобр ,
Гц 1400
φ,
рад π/2
d fобр ,
% 0,54
Таблица 4.2
N 3
Т,
с 9
ψ,
рад π
ƒиссл,
Гц 5600
Um иссл ,
В 2
Дополнительная информация
Проверил: Сметанин В.И.
Похожие материалы
Контрольная работа № 1 по дисциплине: "Метрология, стандартизация и сертификация". Вариант №3
wowan1190
: 14 февраля 2014
Задача No 1 .
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) пог
95 руб.
Контрольная работа №1 по дисциплине: Метрология, стандартизация и сертификация (Вариант 5)
hellofromalexey
: 22 июня 2020
Задача 1.
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонения (СКО)
220 руб.
Контрольная работа №1 по дисциплине: Метрология, стандартизация и сертификация. Вариант 25.
freelancer
: 17 апреля 2016
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) п
50 руб.
Контрольная работа № 1 по дисциплине: Метрология, стандартизация и сертификация. Вариант 9.
ДО Сибгути
: 11 февраля 2016
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено nрезультатоводнократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) пог
200 руб.
Контрольная работа № 1 по дисциплине: Метрология, стандартизация и сертификация. Вариант №5
migmax
: 8 октября 2013
Задача No1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Задача No2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рН, отдаваемой генератором с внутренним сопротивлением RГ и ЭДС E в сопротивление нагрузки RН (рисунок 1).
Задача No 3
Исходные данные:
Осциллогра
175 руб.
Контрольная работа № 1 По дисциплине: Метрология, стандартизация и сертификация. Вариант 03.
JuliaRass
: 31 мая 2012
Вариант 03:
Задача No 1 .
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадрат
200 руб.
Метрология, стандартизация и сертификация
s800
: 9 октября 2025
Метрология, стандартизация и сертификация лабораторные работы 1-3 вариант 3
Проверил: Яковлев А.С. зачтено.
600 руб.
Метрология, стандартизация и сертификация
s800
: 9 октября 2025
Задача № 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) п
500 руб.
Другие работы
Корпус в сборе. Задание 29
lepris
: 17 июня 2022
Корпус в сборе. Задание 29
Сборочная единица "Корпус в сборе" содержит четыре детали. Втулка 4 вставляется в корпус 1. Затем эти две детали крепятся к основанию 2 двумя винтами 5 (М8х16 ГОСТ 1491-80). Крышка 3 крепится к корпусу 1 двумя винтами 6 (М8х18 ГОСТ 17475-80).
Требуется:
а) Выполнить сборочный чертеж узла на формате А3 в масштабе 1:1.
Чертеж должен содержать главный вид с разрезом и вид слева.
б) Составить спецификацию сборочной единицы.
в) выполнить 3d модель сборочной единицы.
г) в
250 руб.
Типы коммуникативной информации для толкового словаря
GnobYTEL
: 24 июля 2013
Задача данной статьи состоит в том, чтобы привлечь внимание к лексикографическим аспектам ряда явлений, которые раньше не рассматривались под этим углом зрения. Она примыкает к недавно опубликованным работам автора, посвященным типам лексикографической информации для толкового словаря как компонента интегрального лингвистического описания1. Среди этих типов коммуникативная информация, или сведения об актуальном членении предложения, занимает особое место.
Коммуникативная структура - свойство не
5 руб.
Архитектура гражданских и промышленных зданий.ти (2/2)Правильные ответы на тест Синергия МОИ МТИ МосАП
alehaivanov
: 21 августа 2025
Результат 100 баллов из 100
Архитектура гражданских и промышленных зданий.ти (2/2)
1. Учебные материалы
В каких зданиях применяются многоволновые оболочки?
Тип ответа: Одиночный выбор • с выбором одного правильного ответа из нескольких предложенных вариантов
• С сеткой колонн от 6х12 м до 12х24 м
• С сеткой колонн от 6х12 м до 18х36 м
• С сеткой колонн от 12х24 м до 18х36 м
• С сеткой колонн от 12х36 м до 18х36 м
В каких зданиях успешно применяются сборные железобетонные элементы?
Тип ответа: О
245 руб.
Статистика производительности труда
Elfa254
: 29 октября 2013
Под производительностью труда, как известно, в экономической литературе понимают степень эффективности живого труда, его фактическая способность производить в единицу времени определенное количество потребительских ценностей или количество затраченного времени на производство единицы продукции.
Существует два аспекта статистического изучения производительности труда: изучение производительности только живого труда и изучения производительности труда всего общественного труда - живого и обществен
10 руб.