Центробежный насос секционный ЦНС 13-140
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра изображений
- Microsoft Word
- Компас или КОМПАС-3D Viewer
Описание
2.1.1. Электронасосный агрегат ЦНС 13-140 предназначен для рабо-ты в масляной системе турбогенераторов.
Рабочая жидкость - масло турбинное от Т22 ГОСТ 32-74.
Диапазон температур прекачиваемого масла от 2 0С до 60 0С.
В зависимости от температуры масла давление на входе в насос находится в пределах от 0,07 до 0,015 МПа (0,7-0,15 кгс/см2).
2.1.2. Насосы ЦНС 13-140 и электронасосные агрегаты на их основе могут применяться для прекачивания газонасыщенной и товарной нефти с температурой от 274 0К (1 0С) до 318 0К (45 0С) в системах внутрипромыс-лового сбора и транспорта нефти.
Перекачиваемая жидкость должна соответствовать следующим физи-ческим характеристикам:
Плотность
Кинематическая вязкость
рН
Давление насыщенных паров
Содержание:
газа (обьемного)
парафина
сероводорода
механических примесей раз-мером твердых частиц до 0,2 мм и микротвердостью 1,47 ГПа
Обводнённость
700-1050 кг/м3
1,5*10-4 м2/сек
7-8,5
не более 665 ГПа
не более 3%
не более 20%
отсутствует
не более 0,2%
до 90%
2.1.3. Максимально допустимое давление на входе в насос - не более 0,3 МПа (3 кгс/см2).
Данные тип электронасосных агрегатов может изготавливаться в ис-полнении "С" (измененная конструкция направляющих аппаратов, введе-ние защиты вала подсальниковым уплотнением).
2.2. Технические данные
2.2.1. Показатели применяемости насосов по параметрам в номиналь-ном режиме для воды с температурой 25 0С и плотностью 997 кг/м3 при барометрическом давлении 1013 гПа указаны в табл. 1.
2.2.2. Характеристики насоса на воде с плотностью 997 кг/м3 приведе-ны на рис.7
Примечание:
Допускаемый кавитационный запас приведен к оси насоса и дан для номинального режима при подаче воды с температурой 25 0Си баромет-рическом давлении 1013 гектопаскалей (760 мм.рт.ст.).
Допускаемое отклонение напора: при изготовлении плюс 12%, минус 5%, при наработке среднего ресурса минус 10% от нижнего предельного значения.
2.2.3. Присоединительные размеры патрубков насосов указаны на рис. 8 и табл.2.
2.2.4. Габаритные и установочные размеры насоса приведены на рис. 9 и табл.3.
2.2.5. Норма расхода смазочных материалов на одну подшипниковую камеру составляет 125-150 грамм.
Рабочая жидкость - масло турбинное от Т22 ГОСТ 32-74.
Диапазон температур прекачиваемого масла от 2 0С до 60 0С.
В зависимости от температуры масла давление на входе в насос находится в пределах от 0,07 до 0,015 МПа (0,7-0,15 кгс/см2).
2.1.2. Насосы ЦНС 13-140 и электронасосные агрегаты на их основе могут применяться для прекачивания газонасыщенной и товарной нефти с температурой от 274 0К (1 0С) до 318 0К (45 0С) в системах внутрипромыс-лового сбора и транспорта нефти.
Перекачиваемая жидкость должна соответствовать следующим физи-ческим характеристикам:
Плотность
Кинематическая вязкость
рН
Давление насыщенных паров
Содержание:
газа (обьемного)
парафина
сероводорода
механических примесей раз-мером твердых частиц до 0,2 мм и микротвердостью 1,47 ГПа
Обводнённость
700-1050 кг/м3
1,5*10-4 м2/сек
7-8,5
не более 665 ГПа
не более 3%
не более 20%
отсутствует
не более 0,2%
до 90%
2.1.3. Максимально допустимое давление на входе в насос - не более 0,3 МПа (3 кгс/см2).
Данные тип электронасосных агрегатов может изготавливаться в ис-полнении "С" (измененная конструкция направляющих аппаратов, введе-ние защиты вала подсальниковым уплотнением).
2.2. Технические данные
2.2.1. Показатели применяемости насосов по параметрам в номиналь-ном режиме для воды с температурой 25 0С и плотностью 997 кг/м3 при барометрическом давлении 1013 гПа указаны в табл. 1.
2.2.2. Характеристики насоса на воде с плотностью 997 кг/м3 приведе-ны на рис.7
Примечание:
Допускаемый кавитационный запас приведен к оси насоса и дан для номинального режима при подаче воды с температурой 25 0Си баромет-рическом давлении 1013 гектопаскалей (760 мм.рт.ст.).
Допускаемое отклонение напора: при изготовлении плюс 12%, минус 5%, при наработке среднего ресурса минус 10% от нижнего предельного значения.
2.2.3. Присоединительные размеры патрубков насосов указаны на рис. 8 и табл.2.
2.2.4. Габаритные и установочные размеры насоса приведены на рис. 9 и табл.3.
2.2.5. Норма расхода смазочных материалов на одну подшипниковую камеру составляет 125-150 грамм.
Дополнительная информация
2.3.1. Центробежный насос ЦНС 13-140 и его исполнения - горизон-тальные секционные, с количеством секций от двух до десяти.
2.3.2. Насос состоит из корпуса и ротора.
К корпусу относятся всасывающая (поз. 19) и нагнетательная (поз.11) крышки, корпуса направляющих аппаратов (поз. 12) с направляющими аппаратами (поз. 13) и кронштейны (поз.1 и 23). Корпуса направляющих аппаратов и крышки стягиваются стяжными шпильками (поз.34).
Стыки корпусов направляющих аппаратов уплотняются резиновым шнуром (поз.17) диаметром 6 мм, средней твердости (ГОСТ 6467-79). Ис-полнение шнуров зависит от назначения насоса.
Ротор насоса состоит из вала (поз.3), на котором установлены рабо-чие колеса (поз.16), дистанционная втулка (поз.10) и диск гидравлической пяты (поз.6). Все эти детали стягиваются на валу гайкой вала (поз.4).
Места выхода вала из корпуса уплотняются сальником (поз.5), пропи-танным антифрикционным составом. Сечение сальника - квадрат со сторо-ной 10 мм. Кольца набивки на валу устанавливается с относительным смещением разрезов на 1200 и поджимаются втулками сальника (поз.22) с помощью гаек на шпильках.
Опорами ротора служат два радиальных сферических подшипника (поз. 31) (1608 ГОСТ 5720-75),которые установлены в кронштейнах (поз.1 и 23) на скользящей посадке, позволяющей перемещаться ротору в осевом направлении на величину "хода" ротора.
Места выхода вала из корпусов подшипников уплотняются манжета-ми (поз.30) 1,2-50*70 ГОСТ 8752-79. Подшипниковые камеры зкрытыт крышками (поз.26 и 33), закрепляемыми болтами и гайками (поз. 36 и 37).
Для предупреждения попадания воды в подшипниковые камеры уста-новлены кольца (поз.2 и 27).
Корпус направляющего аппарата (поз.12), аппарат направляющий (поз.13) , колесо рабочее (поз.16), кольца уплотняющие (поз.14 и 15) в своей
совокупности образуют секцию насоса.
2.3.3. Работа насосов основано на взаимодействии лопаток вращаю-щегося рабочего колеса и перекачиваемой жидкости.
Вращаясь, рабочее колесо сообщает круговое движение жидкости , находящейся между лопатками. Вследствие возникающей центробежной силы жидкость от центра колеса перемещается к внешнему выходу, а осво-бождающееся пространство вновь заполняется жидкостью, поступающей из всасывающей трубы под действием атмосферного или избыточного давления.
Выйдя из рабочего колеса, жидкость в каналы направляющего аппа-рата и затем во второе рабочее колесо с давлением, созданным в первой секции. Оттуда жидкость поступает в третье рабочее колесо с увеличенным давлением, созданным второй секцией и т.д.
Выйдя из последнего рабочего колеса жидкость через направляющий аппарат проходит в крышку нагнетания, откуда поступает в нагнетатель-ный трубопровод.
Благодаря тому, что корпус насоса состоит из отдельных секций, име-ется возможность, не меняя подачу, менять напор путем установки нужно-го числа рабочих колес, направляющих аппаратов с корпусами. При этом меняется только длина вала, стяжных шпилек и рукава (поз.28) системы обводнения.
Во время работы насоса, вследствие давления жидкости на неравные площади по площади боковые поверхности рабочих колес, возникает осе-вое усилие, которое стремится сместить ротор насоса в сторону всасыва-ния.
Для уравновешивания указанного осевого усилия в насосе применяет-ся гидравлическая пята, состоящая из диска гидравлической пяты (поз.6), кольца гидравлической пяты (поз.7), втулки разгрузки (поз.9)и втулки ди-станционной (поз.10).
Во время работы насоса жидкость проходит через кольцевой зазор, образованный втулками разгрузки и дистанционной, и давит на диск гид-равлической пяты с усилием, которое по величине равно сумме усилий, действующих на рабочее колесо, но направленное в сторону нагнетания. Таким
образом, ротор насоса оказывается уравновешенным.
Равенство усилий устанавливается автоматически, благодаря возмож-ности осевого перемещения ротора насоса.
Часть вышедшей из разгрузочной камеры Б жидкость проходит меж-ду гайкой вала (поз.4) и сальниковой набивкой (поз.5), чем достигается жидкостная смазка трущихся поверхностей и их охлаждение, другая (ос-новная) часть по трубам системы обводнения поступает в полость гидроза-твора В, образованную поверхностью вала (поз.3) и расточкой крышки всасывания (поз.19) и отводится из неё наружу через штуцер (поз.18). Давление в полости гидрозатвора несколько превышает атмосферное, что предупреждает засасывание воздуха в насос.
При работе насоса с давлением до 0,3 МПа вытекающую из штуцера жидкость можно направить во всасывающий трубопровод.
2.3.4. Ротор насоса приводится во вращение от электродвигателя че-рез упругую втулочно-пальцевую муфту (поз.24), состоящую из двух по-лумуфт, которые соединяются между собой через резиновые втулки, уста-новленные на цилиндрические пальцы, жестко скрепляемые в полумуфте электродвигателя.
Вращение ротора - правое (по направлению движения часовой стрел-ки), если смотреть со стороны электродвигателя.
2.3.2. Насос состоит из корпуса и ротора.
К корпусу относятся всасывающая (поз. 19) и нагнетательная (поз.11) крышки, корпуса направляющих аппаратов (поз. 12) с направляющими аппаратами (поз. 13) и кронштейны (поз.1 и 23). Корпуса направляющих аппаратов и крышки стягиваются стяжными шпильками (поз.34).
Стыки корпусов направляющих аппаратов уплотняются резиновым шнуром (поз.17) диаметром 6 мм, средней твердости (ГОСТ 6467-79). Ис-полнение шнуров зависит от назначения насоса.
Ротор насоса состоит из вала (поз.3), на котором установлены рабо-чие колеса (поз.16), дистанционная втулка (поз.10) и диск гидравлической пяты (поз.6). Все эти детали стягиваются на валу гайкой вала (поз.4).
Места выхода вала из корпуса уплотняются сальником (поз.5), пропи-танным антифрикционным составом. Сечение сальника - квадрат со сторо-ной 10 мм. Кольца набивки на валу устанавливается с относительным смещением разрезов на 1200 и поджимаются втулками сальника (поз.22) с помощью гаек на шпильках.
Опорами ротора служат два радиальных сферических подшипника (поз. 31) (1608 ГОСТ 5720-75),которые установлены в кронштейнах (поз.1 и 23) на скользящей посадке, позволяющей перемещаться ротору в осевом направлении на величину "хода" ротора.
Места выхода вала из корпусов подшипников уплотняются манжета-ми (поз.30) 1,2-50*70 ГОСТ 8752-79. Подшипниковые камеры зкрытыт крышками (поз.26 и 33), закрепляемыми болтами и гайками (поз. 36 и 37).
Для предупреждения попадания воды в подшипниковые камеры уста-новлены кольца (поз.2 и 27).
Корпус направляющего аппарата (поз.12), аппарат направляющий (поз.13) , колесо рабочее (поз.16), кольца уплотняющие (поз.14 и 15) в своей
совокупности образуют секцию насоса.
2.3.3. Работа насосов основано на взаимодействии лопаток вращаю-щегося рабочего колеса и перекачиваемой жидкости.
Вращаясь, рабочее колесо сообщает круговое движение жидкости , находящейся между лопатками. Вследствие возникающей центробежной силы жидкость от центра колеса перемещается к внешнему выходу, а осво-бождающееся пространство вновь заполняется жидкостью, поступающей из всасывающей трубы под действием атмосферного или избыточного давления.
Выйдя из рабочего колеса, жидкость в каналы направляющего аппа-рата и затем во второе рабочее колесо с давлением, созданным в первой секции. Оттуда жидкость поступает в третье рабочее колесо с увеличенным давлением, созданным второй секцией и т.д.
Выйдя из последнего рабочего колеса жидкость через направляющий аппарат проходит в крышку нагнетания, откуда поступает в нагнетатель-ный трубопровод.
Благодаря тому, что корпус насоса состоит из отдельных секций, име-ется возможность, не меняя подачу, менять напор путем установки нужно-го числа рабочих колес, направляющих аппаратов с корпусами. При этом меняется только длина вала, стяжных шпилек и рукава (поз.28) системы обводнения.
Во время работы насоса, вследствие давления жидкости на неравные площади по площади боковые поверхности рабочих колес, возникает осе-вое усилие, которое стремится сместить ротор насоса в сторону всасыва-ния.
Для уравновешивания указанного осевого усилия в насосе применяет-ся гидравлическая пята, состоящая из диска гидравлической пяты (поз.6), кольца гидравлической пяты (поз.7), втулки разгрузки (поз.9)и втулки ди-станционной (поз.10).
Во время работы насоса жидкость проходит через кольцевой зазор, образованный втулками разгрузки и дистанционной, и давит на диск гид-равлической пяты с усилием, которое по величине равно сумме усилий, действующих на рабочее колесо, но направленное в сторону нагнетания. Таким
образом, ротор насоса оказывается уравновешенным.
Равенство усилий устанавливается автоматически, благодаря возмож-ности осевого перемещения ротора насоса.
Часть вышедшей из разгрузочной камеры Б жидкость проходит меж-ду гайкой вала (поз.4) и сальниковой набивкой (поз.5), чем достигается жидкостная смазка трущихся поверхностей и их охлаждение, другая (ос-новная) часть по трубам системы обводнения поступает в полость гидроза-твора В, образованную поверхностью вала (поз.3) и расточкой крышки всасывания (поз.19) и отводится из неё наружу через штуцер (поз.18). Давление в полости гидрозатвора несколько превышает атмосферное, что предупреждает засасывание воздуха в насос.
При работе насоса с давлением до 0,3 МПа вытекающую из штуцера жидкость можно направить во всасывающий трубопровод.
2.3.4. Ротор насоса приводится во вращение от электродвигателя че-рез упругую втулочно-пальцевую муфту (поз.24), состоящую из двух по-лумуфт, которые соединяются между собой через резиновые втулки, уста-новленные на цилиндрические пальцы, жестко скрепляемые в полумуфте электродвигателя.
Вращение ротора - правое (по направлению движения часовой стрел-ки), если смотреть со стороны электродвигателя.
Похожие материалы
Центробежный насос ЦНС 13-140
HanRF
: 25 июня 2020
Курсовой проект на тему Насос ЦНС 13-140
Состав: Общий вид, сборочный чертеж, рабочие чертежи спецификация, пояснительная записка
Софт: Компас3D 17
1500 руб.
Тест. 140 вопросов. Финансовый менеджмент.
studypro
: 14 февраля 2016
«ФИНАНСОВЫЙ МЕНЕДЖМЕНТ»
1. Что такое финансовый менеджмент ?
А. Система взаимоотношений между различными субъектами по поводу оп-тимизации распределения сырьевых ресурсов
Б. Система взаимоотношений между различными субъектами по поводу привлечения и использования финансовых ресурсов
В. Система взаимоотношений между различными субъектами по поводу деятельности на фондовом рынке
Г. Система экономических отношений между предприятиями
Д. Система экономических отношений между предприятием и государс
400 руб.
Детский сад-ясли на 140 мест
DocentMark
: 17 февраля 2015
2.1Планы этажей(М1:100).
2.2.Фрагмент плана с расстановкой мебели.
2.3.Схема размещения элементов фундаментов(М1:200)
2.4. .Схема размещения элементов покрытия(М1:200).
2.5. .Схема размещения элементов крыши(М1:100;М1:200).
2.6.План стропил(М1:100).
2.7.Схема генплана(М1:400)
2.8.Разрез(М1:100)
2.9.Фасады(м1:100)
2.10.Архитектурно-конструктивные узлы(М1:10;М1:25).
2.11.Интерьер и развёртки стен, план пола, план потолка(М1:50;М1:100).
2.12Пояснительная записка(15…20стр.)
2.13.Практическая часть п
Проект модернизации автогрейдера ДЗ-140
Рики-Тики-Та
: 10 сентября 2012
Содержание
Содержание 3
Введение 5
1 Цель и задачи проектирования 8
2 Анализ вариантов проектирования конструкции автогрейдера и выбор окончательного варианта проектирования для дипломного прое
825 руб.
Физические основы классической механики; Задача № 140
ДО Сибгути
: 31 января 2014
Условие задачи:
Какая работа А должна быть совершена при поднятии с земли материалов для постройки цилиндрической дымоходной трубы высотой h=40 м, наружным диаметром D=3,0 м и внутренним диаметром d=2,0 м? Плотность материала ρ принять равной 2,8*103 кг/м3.
100 руб.
Детский ясли-сад на 140 мест с бассейном
TinaKorol
: 29 января 2009
Раздел №1: Архитектурно – строительная часть
Раздел №2: Расчётно-конструктивная часть
Раздел №3: Механика грунтов, основания и фундаменты
Раздел №4: Организационно – технологическая часть
Раздел №5: Экономическая часть
Раздел №6: Охрана труда
50 руб.
Рабинович Сборник задач по технической термодинамике Задача 140
Z24
: 30 ноября 2025
К газу, заключенному в цилиндре с подвижным поршнем, подводится извне 100 кДж тепла. Величина произведенной работы при этом составляет 115 кДж. Определить изменение полной и удельной внутренней энергии газа, если количество его равно 0,8 кг.
Ответ: ΔU=-15 кДж, Δu=-18,2 кДж/кг.
130 руб.
Другие работы
Функциональное и логическое программирование. Лабораторные работы №1-5. Вариант №3.
SibGUTI2
: 26 июня 2016
Лабораторная работа №1
Вариант 3
Опpеделите на языке ЛИСП и проверьте работу функции, добавляющей заданное паpаметpом число x к каждому элементу списка L.
Например, при x=3, L=(-1 6 3) функция должна возвращать список (2 9 6).
Лабораторная работа №2
Вариант 3
Опpеделите на языке ЛИСП и проверьте работу функции, возвpащающей первый совпавший в двух списках элемент, либо nil, если таких элементов нет.
Например, для списков (1 2 3 4) и (4 3 9 5) функция должна вернуть 3.
Лабораторная работа №
50 руб.
Идиопатическая тромбоцитопеническая пурпура. Геморрагический васкулит
evelin
: 29 января 2013
Патогенез. В основе заболевания лежит разрушение тромбоцитов антителами, синтезирующимися в органах иммунокомпетентной системы (прежде всего, в селезенке, а также в костном мозге, печени и других органах, содержащих лимфоидную ткань). Антитела, присоединяясь к определенному участку мембраны тромбоцитов, формируют с ними иммунный комплекс, который в дальнейшем разрушается в клетках системы мононуклеарных фагоцитов, в основном в селезенке, являющейся активной зоной макрофагальной системы, а в тяже
Функции и операции расчетно-кассовых центров
Aronitue9
: 3 ноября 2012
Функции и операции расчетно-кассовых центров.
Рассмотрение данного вопроса необходимо начинать с рассмотрения общих задач и функций Центрального Банка РФ. Задачи и функции Банка России определены Конституцией Российской Федерации и Федеральным законом "О Центральном банке Российской Федерации (Банке России)". Основная цель деятельности Банка России - защита и обеспечение стабильности рубля. При этом Банк России выступает как единственный эмиссионный центр, а также как орган банковского регулиров
4 руб.
Теплотехника СФУ 2017 Задача 5 Вариант 45
Z24
: 31 декабря 2026
Определить удельный лучистый тепловой поток q (Вт/м²) между двумя параллельно расположенными плоскими стенками, имеющими температуры t1 и t2 и степени черноты ε1 и ε2, если между ними нет экрана. Определить q при наличии экрана со степенью черноты εэ (с обеих сторон).
Ответить на вопросы.
Во сколько раз уменьшится тепловой поток, если принять в вашем варианте задачи εэ = ε1 по сравнению с потоком без экрана?
Для случая ε1 = ε2 определите, какой экран из таблицы 5 даст наихудший эффект, а ка
180 руб.